

2118886 EPA NO. <u>U590002</u> FILE NO. <u>P1-23</u>

Attachment B

(request dated 28, 2000)

DRAFT

SURFACE SOIL ASSESSMENT
Hecla Mining Company - Apex Unit
St. George, Utah

June 7, 1995

Copyright 1995, Kleinfelder, Inc.

Unauthorized use or copying of this document is strictly prohibited. See "Application for Authorization To Use" located in Appendix E of this document if use or copying is desired by anyone other than the Client and for the project identified above.

Prepared For:

DRAFT

Hecla Mining Company 6500 Mineral Drive Coeur d'Alene, Idaho 83814 - 8788

Kleinfelder File No. 31-6930-04

Surface Soil Assessment Hecla Mining Company - Apex Unit St. George, Utah

Prepared by:

James Anderson, P.G. Project Geologist

Daniel Horns, Ph.D., P.G. Staff Geologist

KLEINFELDER, INC. 2749 E. Parley's Way, Suite 100 Salt Lake City, UT 84109

June 7, 1995

DRAFT

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION	
2.1 General	
2.2 Scope of Work	
2.3 Geologic Setting	
2.3.1 Topographic Setting	
2.3.2 Bedrock Geology	
2.3.3 Quaternary Sediments	
2.3.4 Geologic Structures	
3.0 FIELD ACTIVITIES	7
3.1 Sample Locations	
3.2 Soil Sample Collection	9
3.3 Decontamination Protocol	
3.4 Sample Handling	10
3.5 Sample Analysis	
4.0 RESULTS	12
4.1 Background Soil Concentrations	
4.2 Metals	
4.3 Total Recoverable Petroleum Hydrocarbons	
4.4 Gross Alpha/Beta Radiation	
4.5 Quality Control	
4.5.1 Field Duplicates	
4.5.2 MS/MSD Results	
4.5.3 Method Blanks	
5.0 LIMITATIONS	22
REFERENCES	23
PLATES	
1 - Site Location Map	3
2 - Facility Map and Soil Sample Sites	4
3 - Soil Sample Sites in the Plant Area	

DHAFT

TABLES

1 - Surface Soil Samples by Area, Laboratory Analytical	Results
for Total Metals	13-16
2 - Surface Soil Samples - TPH	
3 - Surface Soil Samples - Radiological	
4 - Summary of Quality Control Results	

APPENDICES

- A Sampling and Analysis Plan
- B Sample Control Logs
- C Field Notes
- D Laboratory Reports and Chain of Custody Forms
- E Application for Authorization to Use

1.0 EXECUTIVE SUMMARY

In May 1995, Kleinfelder was retained by Hecla Mining Company to assess potential impacts to soils at the Apex Unit Processing Plant. Eighty surface soil samples were collected from eight discreet areas within the facility (the plant area, surge pond, Pond 1C, Pond 2A, Pond 3B, a soil stockpile, and two ore storage areas). Two samples were also collected from around the facility area to assess potential impact by windborn dust. For comparison, seven background soil samples were collected from four areas that appear to represent conditions on the facility. Samples were analyzed for 12 metals (arsenic, barium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, selenium, silver, zinc). In addition, selected samples from the process plant area were analyzed for total recoverable petroleum hydrocarbons, and some samples from the plant area and one of the ore storage areas were analyzed for gross alpha and beta radiation.

2.1 General

Kleinfelder Inc., was retained by Hecla Mining Company to provide environmental engineering services to assess the potential that metals may have impacted soils at the Apex Plant facility.

Hecla Mining Company's Apex Plant is located approximately 16 miles west of St. George, Utah (Plate 1). The plant is approximately 160 acres in size and has operated for the past 10 years processing Germanium (Ge) and Gallium (Ga) from ores mined at the Apex mine. In 1992, the plant began processing primarily cobalt. Currently, cobalt is extracted from spent petroleum catalysts rather than from ore.

2.2 Scope of Work

The scope of services, as described in the Sampling and Analysis Plan (see Appendix A), includes collecting soil samples from the following areas (Plate 2):

- Ore Storage Areas 1 and 2
- Plant/ Process Area
- Pond 2A
- Pond 1C
- Pond 3B North and South
- Surge Pond
- Soil Stockpile
- Windblown (Two sites in the plant vicinity)
- Background (several sites in the plant vicinity)

All samples collected during the assessment were analyzed for metals: Arsenic, Barium, Cadmium, Chromium, Cobalt, Copper, Lead, Mercury, Nickel, Selenium, Silver and Zinc. Eleven samples (many composited) were analyzed for total petroleum hydrocarbons (TPH). Additionally four composite samples were analyzed for gross α/β radiation (EPA method 9030).

2.3 Geologic Setting

2.3.1 Topographic Setting

The Hecla Mining Company, Apex Unit Processing Plant is located at an elevation of approximately 3,700 feet on the northeast slope of the Beaver Dam Mountains (Plate 1). The plant lies near the base of a broad, north-trending, gently northward-sloping valley. The valley is bound on the east and west by low, rolling, north-trending ridges. The Shivwits, Utah 7.5" Topographic Quadrangle shows an ephemeral stream along the east side of the Plant area. The stream drains to the north, and does not extend southward beyond the Plant area.

2.3.2 Bedrock Geology

Bedrock in the vicinity of the Apex Plant is composed of rock of the Moenkopi Formation (Hintze, 1986). The Moenkopi Formation consists of interbedded limestone, dolomitic limestone, dolomite, siltstone, dolomitic siltstone, mudstone, gypsum, sandstone, and conglomerate deposited during Triassic time. In the vicinity of the Apex Plant, rock of the Moenkopi Formation consists dominantly of sandstone, siltstone, mudstone, dolomitic limestone, dolomite, and gypsum. These rocks are exposed on the ridges to the west and east of the plant.

2.3.3 Quaternary Sediments

The base of the broad valley at the Apex Plant is filled by Quaternary colluvial, alluvial, and fluvial deposits. These Quaternary deposits, derived generally from rock of the Moenkopi Formation exposed on the ridges on either side of the valley, are composed of interbedded gravel, sand, silt, and clay. Dominant sediment types noted during sampling are gravelly clays and clayey gravels. Given the lithology of the nearby Moenkopi Formation, the Quaternary sediments may be relatively rich in carbonate and sulfate salts.

м

2.3.4 Geologic Structures

The valley at the Apex Plant is bound on the east and west by north-striking normal faults (Hintze, 1986). These faults do not appear to have affected Quaternary deposits in the area (Hintz, 1986), and Hecker (1993) does not show these faults as having Quaternary activity.

3.0 FIELD ACTIVITIES

The Sampling and Analysis Plan (Appendix A) describes general sampling locations and depths, and specifies chemical analyses to be performed. The sampling and decontamination protocol were developed through discussions between Kleinfelder and Mr. Gary Gamble of Hecla Mining Company. Sampling locations were refined in the field based on site-specific information provided by Mr. Anh Mai and Ms. Penny Bassett of Hecla Mining Company.

3.1 Sample Locations

Surface soils (0 to 1 foot depth) were sampled in the following locations to assess potential impacts:

- Process Plant Area: 29 samples from 26 sites (Plant-1 through Plant 26, Plate 3)
- Ore Storage Area #1: 10 samples from 9 sites (Ore-1 through Ore-9, Plate 2)
- Ore Storage Area #2: 2 samples from 2 sites (Ore-10 and Ore-11, Plate 2)
- Pond 3B, North and South: 16 samples from 14 sites (P3-1 through P3-14, Plate 2)
- Pond 2A: 7 samples from 6 sites (P2-1 through P2-6, Plate 2)
- Pond 1C: 7 samples from 6 sites (P1-1 through P1-6, Plate 2)
- Stockpile Area: 2 samples from 2 sites (SP-1 and SP-2, Plate 2)
- Windblown Area: 3 samples from 2 sites in the plant vicinity (Windblow-1 and Winblow-2, Plate 2)
- Surge Pond: 4 samples from 4 sites (S-1 through S-4, Plate 2)
- Background Areas Unaffected by Plant Activities: 7 samples from 7 sites (BG-1 though BG-7, Plate 2)

Generally, samples were collected at the locations specified by Kleinfelder's Sampling and Analysis Plan. Background samples were collected from four general areas: (1) the soil stockpile generated during plant excavation/construction (samples BG-1 and BG-2); (2) soils near the east border of the Apex facility (BG-3 and BG-4); (3) soils west of the Apex facility (BG-5 and BG-6); and (4) soils approximately 0.7 miles northwest of the Apex facility (BG-7). The rational for selecting these four areas is as follows. Background samples were collected from the stockpile to characterize soils

collected from both east and west of the facility to incorporate the range in soil types across the facility. A background sample was collected from 0.7 miles northwest of the facility to compare with those samples from closer to plant operations.

3.2 Soil Sample Collection

Each sample was issued a unique sample I.D. number and logged on sample control logs for sample description and documentation purposes (Appendix B). Labels on each sample included the sample I.D. number, the date and time of collection, the job number, and the sample preservation method used (if any).

The samples were labeled, stored, transported and remitted to an independent EPA-certified analytical laboratory, American West Analytical Laboratories, in Salt Lake City, Utah, according to standard chain-of-custody protocol.

Soil samples were collected after vegetation and the top 1 to 2 inches of loose soil were scraped away. Background samples were collected from 10 to 16 inches below ground level in order to reduce possible effects of windblow dust. The observed soils at 10 to 16 inches depth did not vary in general composition from surface soils in the facility and are considered representative of the uppermost soils.

Six-inch stainless steel sample tubes were pushed into the soil after the top two inches had been removed. The ends of the sampler tubes were covered with TeflonTM sheets and capped with durable plastic end-caps. In areas where the surface soil was too dense to push the stainless steel sampling tube, the soil was loosened by using a chisel. The chisel was driven into the soil in the vicinity to loosen a small volume of soil. Loosened soil from the area, but not adjacent to the chisel, was then placed by hand into a stainless steel tube.

A fresh pair of disposable latex gloves was worn when each sample was collected. After sealing, sample tubes were labeled, recorded on a log, placed in sealed bags, and transported as described below (Section 3.4).

3.3 Decontamination Protocol

To reduce the potential for introducing contamination into the samples, the stainless steel sample tubes were pre-cleaned using a detergent wash followed by a steam rinse. Sample equipment, including chisels, hammers and hand tools was decontaminated before collecting each sample by scrubbing with a non-phosphate detergent and water solution followed by a rinse with de-ionized water. Approximately 4 gallons of liquid was generated by this procedure. Liquid generated by on-site decontamination was disposed of as directed by Hecla at the plant's landfill area.

3.4 Sample Handling

Upon collection, each sample was issued a unique sample I.D. Labels on each sample included the sample I.D. number, the date and time of collection, the job number, and the sample preservation method used (if any).

After securing and labeling each sample, sample information was recorded on the chain-of-custody and on a Sample Control Log. The sample control logs are in Appendix B. Each sample was then immediately stored in an iced cooler for transport to the analytical laboratory. The chain-of-custody form accompanied the cooler at all times. The chain-of-custody form included Kleinfelder's name, address and telephone number, the date and time the samples were collected, the number of containers each sample occupied, and the analyses for which the samples were being submitted. The chain-of-custody form was signed by each person who handled the samples. A copy of the chain-of-custody form is presented in Appendix D.

3.5 Sample Analysis

All surface samples collected were analyzed for the following nine metals by ICP (EPA Method 6010): barium, cadmium, chromium, cobalt, copper, lead, nickel, silver and zinc. Additionally, arsenic was analyzed by Method 7060, mercury by Method 7471, and selenium by Method 7740.

Eleven samples were also analyzed for total recoverable petroleum hydrocarbons (TRPH) by Method 418.1. Six of these samples were composites of two to four samples collected in the field. The laboratory performed all composting.

Four composite samples were analyzed for gross alpha/beta radiation by EPA Method 9030. The composite samples are each composed of two to four samples collected from selected areas in the process plant and in Ore Storage Area 1. The laboratory performed all composting.

4.0 RESULTS

4.1 Background Soil Concentrations

Background soil metals concentrations were measured at seven locations: BG-1 through BG-7. These seven locations are shown on Plate 2.

The analytical results are summarized on Table 1. Of the 12 metals measured, two (mercury and selenium) were not detected at concentrations exceeding the reporting limit of 0.1 mg/kg in the background samples. Background ranges for each of the remaining 10 metals were estimated by calculating the average concentration, plus or minus three standard deviations, for each metal. This results in the following ranges.

		Backgro (Sample		•
		-		
	Analyte	Sta.	De	v.)
Arsenic		0	-	7.2
Barium		49	-	152
Cadmium		0.1		0.7
Chromium		2	-	20
Cobalt		2.4	-	9.6
Copper		7	_	20
Lead		0.9	-	12.9
Mercury		< 0.1		
Nickel		2.2		17.8
Selenium		< 0.1		
Silver		0	-	2.3
Zinc		2	-	57

Based on observed soil composition, the ranges developed above should be generally representative of natural shallow soil conditions in the facility. Metals concentrations

TABLE 1

SURFACE SOIL SAMPLES by AREA
Laboratory Analytical Results for Total Metals
Hecla Mining Company, Apex Plant
St. George, Utah
reported in mg/kg

BACKGROU	JND												
Lab ID	Sample Location	As	Ba	Cd	Cr	Co	Cu	Pb	Ni	Hg	Se	Ag	Zn
22631-42	BG1	1.1	120	0.3	14	6.8	14	4.6	12	<0.1	<0.1	<0.5	39
22631-43	BG2	2.5	66	0.3	6	3.7	16	5.3	5.4	<0.1	<0.1	0.9	13
22631-49	BG3	2.0	110	0.4	12	6.5	12	6.6	11	<0.1	<0.1	<0.5	31
22631-50	BG4	2.4	100	0.5	11	6.0	10	6.9	10	< 0.1	<0.1	<0.5	25
22631-85	BG5	5.2	100	0.3	11	5.6	11	9.7	9.8	<0.1	<0.1	1.3	25
22631-86	BG6	4.3	110	0.3	11	5.8	12	9.4	10	<0.1	<0.1	1.1	29
22631-87	BG7	1.7	97	0.5	13	7.7	16	5.5	14	<0.1	<0.1	<0.5	41
Background Ra	ange (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	NA	NA	2.3	57
Average		2.7	100	0.4	11	6.0	13	6.9	10	NA	NA	0.5	29
Standard Dev.		1.5	17	0.1	3	1.2	2	2.0	2.6	NA	NA	0.6	9

POND 3B N	NORTH & SOU	TH											
Lab ID	Sample Location	As	Ba	Cd	Cr	Со	Cu	Pb	Ni	Hg	Se	Ag	Zn
22631-44	P3-1	8	89	0.8	13	22	11	6.1	23	<0.1	<0.1	<0.5	910
22631-45*	P3-2*	140	33	10	190	69	40	9.5	86	<0.1	<0.1	0.5	6400
22631-46*	P3-2*	65	23	7.5	160	53	26	9.1	64	<0.1	<0.1	<0.5	4200
22631-48	P3-3	62	110	2.3	31	53	25	9.3	48	<0.1	<0.1	<0.5	1900
22631-58	P3-4	4.8	99	2.1	13	20	10	6.2	23	<0.1	<0.1	<0.5	640
22631-59	P3-5	8.4	93	0.8	14	21	9.3	5.5		<0.1	<0.1	<0.5	570
22631-61	P3-6	79	67	2.1	24	36	9.5	8	37	<0.1	<0.1	<0.5	1300
22631-62	P3-7	49	67	2.3	19	67	15	8.7	52	<0.1	<0.1	<0.5	2200
22631-68	P3-8	2.7	94	0.7	10	5.3	6.8	5.5	10	<0.1	< 0.1	<0.5	25
22631-66*	P3-9*	3.6	67	0.8	4.5	3.5	2.2	6.6	5.5	<0.1	< 0.1	<0.5	59
22631-67*	P3-9*	7.2	75	1.0	6.1	6.1	4.2	9.7	8.1	<0.1	<0.1	<0.5	150
22631-65	P3-10	3.8	44	3.4	5.2	22	2.8	9.3	16	<0.1	<0.1	<0.5	1400
22631-64	P3-11	7.1	84	0.9	10	14	8.7	6.7	24	<0.1	<0.1	<0.5	140
22631-63	P3-12	2.6	74	0.7	5.3	3	3.1	5.6	5.4	<0.1	<0.1	<0.5	15
22631-60	P3-13	2500	60	14	380	37	87	20	54	<0.1	0.1	<0.5	2500
22631-47	P3-14	3.2	81	2.3	8.3	58	18	9.9	49	<0.1	<0.1	<0.5	4400
Background Ra	ange (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	NA	NA	2.3	57
Average		39.1	74.3	2.8	44.1	32.4	14.5	7.7	34.7	0.0	0.0	0.0	1668.5
Standard Dev.		44.4	27.1	3.1	65.5	24.6	11.4	1.7	25.5	0.0	0.0	0.2	1992.6

^{*} Duplicate samples

Add a change of the

Background Range is defined as the background mean plus three standard deviations

Table 1, continued

Sample Location A	S	Ва	Cd `	Cr.	Co	Cu	Pb	Ni	Hg		Se	Ag	Zn
Plant 1	92	66	7.2	9.1	260	260	170	28	<0.1		< 0.1	0.7	250
Plant 2	230	150	14	11	120	570	. 240-	55	< 0.1		<0.1	15	530
Plant 3*	2.6	76	0.2	7.8	4.4	7.1	7.2	7.1	< 0.1		<0.1	1.5	18
Plant 3*	2.7	86	0.3	8.4	5.7	7.5	8.2	7.6	< 0.1		<0.1	1.7	19
Plant 4	190	140	42	6.6	80	600	380	32	< 0.1		<0.1	3.1	590
Plant 5	100	210	9.5	11	59	340	280	22	< 0.1		<0.1	2.7	660
Plant 6	2.2	63	0.2	8.6	4.2	16	5	7.1	< 0.1		<0.1	1.1	22
Plant 7	410	85	6	9.6	46	630	480	18		0.2	<0.1	3.3	430
Plant 8	40	150	1.1	8.7	14	70	81	11	< 0.1		<0.1	0.7	76
Plant 9	21	78	1.1	5.3	5.4	53	50	7.4	< 0.1	7	<0.1	<0.5	49
Plant 10	200	73	75	8.2	72	430	410	21	< 0.1		<0.1	5.1	680
Plant 11	240	90	8.8	12		450	400				<0.1	3.3	580
Plant 12	510	120	7.7	10	20	4300	980	22		0.1	2	4.5	1000
Plant 13*	1200	310	35	16	280	4400	2500	110		0.4	1.5	9.5	4900
Plant 13*	930	250	30	15	250	2700	2300	88		0.4	2	10	4400
Plant 14	2.6	79	0.3	7.3	4.1	11	9.1	6.6	< 0.1		<0.1	1.6	
Plant 15	8.8	35	1.5	6.7	40	7.9	23	10	< 0.1		<0.1	0.7	15
Plant 16	10	29	1.4	5.9	91	23	26	9	< 0.1		< 0.1	<0.5	26
Plant 17	3600	270	46	41	1500	8700	8900	150		1.6	3.2	33	9100
Plant 18	5000	620	640	21	420	28000	13000	260		2.3	5.3	36	16000
Plant 19	71	91	3.6	11	300	91	160	17	< 0.1		<0.1	0.8	120
Plant 20	7000	300	110			12000	20000		_	0.6	6.4	40	11000
Plant 21	80		4				110		-		< 0.1	1.2	97
Plant 22	2700	COLUMN TO SERVICE STATE OF THE PARTY OF THE	43			8600	9900		-	0.2	2.8	25	8900
Plant 23*	36	66	1.3			74	89		_		< 0.1	0.7	82
Plant 23*	10	68	0.6			40	33				<0.1	1	63
Plant 24	180	94	17		290	150	250				<0.1	1.8	
Plant 25	58	22	1.6		87	160	47				< 0.1		160
Plant 26	200	110	19	21	900	430	370	79	< 0.1		0.2	4.7	410
lange (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	N	A	NA	2.3	57
	797.48	139.66	38.88	12.53	209.13	2524.40	2110.64	48.54		0.20	0.81		2082.59
	1677.96	122.39	118.40	7.67	324.00	5793.78	4745.89			0.52	1.67		4053.23
	Plant 1 Plant 2 Plant 3* Plant 3* Plant 4 Plant 5 Plant 6 Plant 7 Plant 8 Plant 10 Plant 11 Plant 12 Plant 13* Plant 13* Plant 14 Plant 15 Plant 16 Plant 17 Plant 18 Plant 19 Plant 19 Plant 20 Plant 20 Plant 21 Plant 22 Plant 23* Plant 23* Plant 24 Plant 25 Plant 26 Lange (upper end)	Plant 1 92 Plant 2 230 Plant 3* 2.6 Plant 3* 2.7 Plant 4 190 Plant 5 100 Plant 6 2.2 Plant 7 410 Plant 8 40 Plant 9 21 Plant 10 200 Plant 11 240 Plant 12 510 Plant 13* 1200 Plant 13* 930 Plant 14 2.6 Plant 15 8.8 Plant 16 10 Plant 17 3600 Plant 18 5000 Plant 19 71 Plant 20 7000 Plant 21 80 Plant 23* 36 Plant 23* 10 Plant 24 180 Plant 25 58 Plant 26 200 Plange (upper end) 7.2	Plant 1 92 66 Plant 2 230 150 Plant 3* 2.6 76 Plant 3* 2.7 86 Plant 4 190 140 Plant 5 100 210 Plant 6 2.2 63 Plant 7 410 85 Plant 8 40 150 Plant 9 21 78 Plant 10 200 73 Plant 11 240 90 Plant 12 510 120 Plant 13* 1200 310 Plant 13* 930 250 Plant 14 2.6 79 Plant 15 8.8 35 Plant 16 10 29 Plant 17 3600 270 Plant 18 5000 620 Plant 20 7000 300 Plant 21 80 89 Plant 23* 36 66 Plant 24 180	Plant 1 92 66 7.2 Plant 2 230 150 14 Plant 3* 2.6 76 0.2 Plant 3* 2.7 86 0.3 Plant 4 190 140 42 Plant 5 100 210 9.5 Plant 6 2.2 63 0.2 Plant 7 410 85 6 Plant 8 40 150 1.1 Plant 9 21 78 1.1 Plant 10 200 73 75 Plant 11 240 90 8.8 Plant 12 510 120 7.7 Plant 13* 1200 310 35 Plant 13* 1200 310 35 Plant 14 2.6 79 0.3 Plant 15 8.8 35 1.5 Plant 16 10 29 1.4 Plant 17 3600 270 46 <	Plant 1 92 66 7.2 9.1 Plant 2 230 150 14 11 Plant 3" 2.6 76 0.2 7.8 Plant 3" 2.7 86 0.3 8.4 Plant 4 190 140 42 6.6 Plant 5 100 210 9.5 11 Plant 6 2.2 63 0.2 8.6 Plant 7 410 85 6 9.6 Plant 8 40 150 1.1 8.7 Plant 9 21 78 1.1 5.3 Plant 10 200 73 75 8.2 Plant 11 240 90 8.8 12 Plant 12 510 120 7.7 10 Plant 13" 1200 310 35 16 Plant 13" 930 250 30 15 Plant 14 2.6 79 0.3 7.3	Plant 1 92 66 7.2 9.1 260 Plant 2 230 150 14 11 120 Plant 3* 2.6 76 0.2 7.8 4.4 Plant 3* 2.7 86 0.3 8.4 5.7 Plant 4 190 140 42 6.6 80 Plant 5 100 210 9.5 11 59 Plant 6 2.2 63 0.2 8.6 4.2 Plant 7 410 85 6 9.6 46 Plant 8 40 150 1.1 8.7 14 Plant 9 21 78 1.1 5.3 5.4 Plant 10 200 73 75 8.2 72 Plant 11 240 90 8.8 12 57 Plant 12 510 120 7.7 10 20 Plant 13* 1200 310 35 16 <t< td=""><td>Plant 1 92 66 7.2 9.1 260 260 Plant 2 230 150 14 11 120 570 Plant 3* 2.6 76 0.2 7.8 4.4 7.1 Plant 3* 2.7 86 0.3 8.4 5.7 7.5 Plant 4 190 140 42 6.6 80 600 Plant 5 100 210 9.5 11 59 340 Plant 6 2.2 63 0.2 8.6 4.2 16 Plant 7 410 85 6 9.6 46 630 Plant 8 40 150 1.1 8.7 14 70 Plant 9 21 78 1.1 5.3 5.4 53 Plant 10 200 73 75 8.2 72 430 Plant 11 240 90 8.8 12 57 450 Plant 1</td><td>Plant 1 92 66 7.2 9.1 260 260 170 Plant 2 230 150 14 11 120 570 240 Plant 3* 2.6 76 0.2 7.8 4.4 7.1 7.2 Plant 3* 2.7 86 0.3 8.4 5.7 7.5 8.2 Plant 4 190 140 42 6.6 80 600 380 Plant 5 100 210 9.5 11 59 340 280 Plant 6 2.2 63 0.2 8.6 4.2 16 5 Plant 7 410 85 6 9.6 46 630 480 Plant 8 40 150 1.1 8.7 14 70 81 Plant 9 21 78 1.1 5.3 5.4 53 50 Plant 10 200 73 75 8.2 72 430</td><td>Plant 1 92 66 7.2 9.1 260 260 170 28 Plant 2 230 150 14 11 120 570 240 55 Plant 3* 2.6 76 0.2 7.8 4.4 7.1 7.2 7.1 Plant 3* 2.7 86 0.3 8.4 5.7 7.5 8.2 7.6 Plant 4 190 140 42 6.6 80 600 380 32 Plant 5 100 210 9.5 11 59 340 280 22 Plant 6 2.2 63 0.2 8.6 4.2 16 5 7.1 Plant 7 410 85 6 9.6 46 630 480 18 Plant 8 40 150 1.1 8.7 14 70 81 11 Plant 9 21 78 1.1 5.3 5.4 53</td><td>Plant 1 92 66 7.2 9.1 260 260 170 28 < 0.1 Plant 2 230 150 14 11 120 570 240 55 < 0.1</td> Plant 3* 2.6 76 0.2 7.8 4.4 7.1 7.2 7.1 < 0.1</t<>	Plant 1 92 66 7.2 9.1 260 260 Plant 2 230 150 14 11 120 570 Plant 3* 2.6 76 0.2 7.8 4.4 7.1 Plant 3* 2.7 86 0.3 8.4 5.7 7.5 Plant 4 190 140 42 6.6 80 600 Plant 5 100 210 9.5 11 59 340 Plant 6 2.2 63 0.2 8.6 4.2 16 Plant 7 410 85 6 9.6 46 630 Plant 8 40 150 1.1 8.7 14 70 Plant 9 21 78 1.1 5.3 5.4 53 Plant 10 200 73 75 8.2 72 430 Plant 11 240 90 8.8 12 57 450 Plant 1	Plant 1 92 66 7.2 9.1 260 260 170 Plant 2 230 150 14 11 120 570 240 Plant 3* 2.6 76 0.2 7.8 4.4 7.1 7.2 Plant 3* 2.7 86 0.3 8.4 5.7 7.5 8.2 Plant 4 190 140 42 6.6 80 600 380 Plant 5 100 210 9.5 11 59 340 280 Plant 6 2.2 63 0.2 8.6 4.2 16 5 Plant 7 410 85 6 9.6 46 630 480 Plant 8 40 150 1.1 8.7 14 70 81 Plant 9 21 78 1.1 5.3 5.4 53 50 Plant 10 200 73 75 8.2 72 430	Plant 1 92 66 7.2 9.1 260 260 170 28 Plant 2 230 150 14 11 120 570 240 55 Plant 3* 2.6 76 0.2 7.8 4.4 7.1 7.2 7.1 Plant 3* 2.7 86 0.3 8.4 5.7 7.5 8.2 7.6 Plant 4 190 140 42 6.6 80 600 380 32 Plant 5 100 210 9.5 11 59 340 280 22 Plant 6 2.2 63 0.2 8.6 4.2 16 5 7.1 Plant 7 410 85 6 9.6 46 630 480 18 Plant 8 40 150 1.1 8.7 14 70 81 11 Plant 9 21 78 1.1 5.3 5.4 53	Plant 1 92 66 7.2 9.1 260 260 170 28 < 0.1 Plant 2 230 150 14 11 120 570 240 55 < 0.1	Plant 1	Plant 1	Plant 1 92 66 7.2 9.1 260 260 170 28 <0.1 <0.1 0.7 Plant 2 230 150 14 11 120 570 240 55 <0.1 <0.1 15 Plant 3* 2.6 76 0.2 7.8 4.4 7.1 7.2 7.1 <0.1 <0.1 1.5 Plant 3* 2.7 86 0.3 8.4 5.7 7.5 8.2 7.6 <0.1 <0.1 1.5 Plant 3* 2.7 86 0.3 8.4 5.7 7.5 8.2 7.6 <0.1 <0.1 1.7 Plant 4 190 140 42 6.6 80 600 380 32 <0.1 <0.1 <0.1 3.1 Plant 5 100 210 9.5 11 59 340 280 22 <0.1 <0.1 <0.1 2.7 Plant 6 2.2 63 0.2 8.6 4.2 16 5 7.1 <0.1 <0.1 <0.1 1.1 Plant 7 410 85 6 9.6 46 630 480 18 0.2 <0.1 <0.1 3.3 Plant 8 40 150 1.1 8.7 14 70 81 11 <0.1 <0.1 <0.5 Plant 10 200 73 75 8.2 72 430 410 21 <0.1 <0.1 <0.5 Plant 11 240 90 8.8 12 57 450 400 21 <0.1 <0.1 <0.5 Plant 12 510 120 7.7 10 20 4300 980 22 0.1 <0.1 <0.1 3.3 Plant 13* 1200 310 35 16 280 4400 2500 110 0.4 1.5 9.5 Plant 14 2.6 79 0.3 7.3 4.1 11 9.1 6.6 <0.1 <0.1 <0.5 Plant 15 8.8 35 1.5 6.7 40 7.9 23 10 <0.1 <0.1 <0.5 Plant 16 10 29 1.4 5.9 91 23 26 9 <0.1 <0.1 <0.5 Plant 17 3600 270 46 41 1500 5700 8900 150 1.6 3.2 3.3 Plant 18 5000 620 640 21 420 28000 13000 260 2.3 5.3 3.3 Plant 20 7000 300 110 30 690 12000 20000 200 0.6 6.4 40 Plant 21 80 89 4 11 100 87 110 20 <0.1 <0.1 <0.5 Plant 22 2700 230 43 15 80 600 9900 100 0.2 2.8 25 Plant 23* 36 66 1.3 9.8 100 74 89 16 <0.1 <0.1 <0.1 <0.5 Plant 24 180 94 17 17 290 150 250 36 <0.1 <0.1 <0.1 <0.5 Plant 25 58 22 1.6 9.3 87 160 47 14 <0.1 <0.1 <0.1 <0.5 Plant 24 180 94 17 17 290

^{*} Duplicate samples

Alexander and A

Background Range is defined as the background mean plus two standard deviations

Table 1, continued

ORE STOR	AGE #1												
Lab ID	Sample Location	As	Ba	Cd	Cr	Co	Cu	Pb	Ni	Hg	Se	Ag	Zn
22631-30	Ore 1	110	44	7.8	. 25	1100	160	170		<0.1	0.3	The same of the sa	The state of the s
22631-31	Ore 2	1400	210	15	13	190	2200	2500	69	<0.1	1.9		
22631-32	Ore 3	3500	550	80	21	220	9700	10000	170	0.2			
22631-33	Ore 4	2500	390	47	15	210	8200	6400	110	0.2		21	-
22631-34	Ore 5	3.2	32	1	7.5	3.5	5	12	7.1	<0.1	0.1	< 0.5	11
22631-35*	Ore 6*	2.5	30	1.1	6.4	3.2	3.4	9.6	7.1	<0.1	<0.1	<0.5	9
22631-36*	Ore 6*	3.2	33	1	6.9	3.3	4.6	9.4	7.3	<0.1	<.01	<0.5	12
22631-37	Ore 7	61	140	1.5	16	12	130	120	18	<0.1	0.2	<0.5	270
22631-38	Ore 8	24	100	0.2	13	8	47	62	12	<0.1		<0.5	60
22631-39	Ore 9	28	110	0.5	13	7.7	58	48	12	<0.1	<0.1	<0.5	100
Background F	Range (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	NA	NA	2.3	57
Average		763.19	163.90	15.51	13.68	175.77	2050.80	1933.10	52.25	0.04	1.11	6.17	
Standard Dev		1275.96	175.35	26.86	6.03	338.29	3714.24	3494.30	59.00	0.08	2.18	10.20	

ORE STORA	AGE #2												
Lab ID	Sample Location	As .	Ba	Cd	Cr	Co	Cu	Pb	Ni	Hg	Se	Ag	Zn
22631-40	Ore 10	0.	6 140	0.3	14	7.1	15	7.1		<0.1		<0.5	40
22631-41	Ore 11	<0.5	150	0.4	16	8	26	20	14	<0.1	<0.1	<0.5	54
Rackground R	Range (upper end)	7.	2 152	0.7	19	9.7	20	12.9	10	NA	NIA.		
Average	lange (upper enu)	0.3			15.00			13.55	13 50		NA O O O	2.3	
	-		-						13.50			0.00	
Standard Dev.		0.4	2 7.07	0.07	1.41	0.64	7.78	9.12	0.71	0.00	0.00	0.00	9.90

POND 1C Lab ID	Sample Location	Carrier Street Communication	Ba	Cd	Cr	Co	Cu	DC	ga, we also a second	NAME OF THE OWNER, THE OWNER,		ha morality of the morality	Market strangering
Lab ID	Sample Location	15	Dd	Ca	G.	Co	CU	Pb	Ni :	Hg	Se	Ag	Zn
22631-69	P1-1	890	40	50	5.9	6.4	640	20	11	<0.1	< 0.1	<0.5	6300
22631-70	P1-2	91	28	5.6	5.7	3.5	83	9.2	6.6	<0.1	<0.1	<0.5	250
22631-72	P1-3	4.3	17	0.9	4.5	2.5	1.7	7.4	5.6	<0.1	<0.1	<0.5	4.7
22631-73	P1-4	21	80	1	11	5.1	17	6.9	8.8	<0.1	0.3	<0.5	54
22631-74*	P1-5*	17	19	1.2	4.5	3.5	10	11	5.5	<0.1	<0.1	<0.5	11
22631-75*	P1-5*	33	24	1.5	5.2	3.4	19	12	5.3	<0.1	<0.1	<0.5	22
22631-71	P1-6	5.3	89	0.9	11	4.1	7.9	9.1	7.7	<0.1	<0.1	1	26
Background R	Range (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	NA	NA	2.3	57
Average		151.66	42.43	8.73	6.83	4.07	111.23	10.80	7.21	0.00	0.04	0.14	952.53
Standard Dev.		326.92	29.80	18.28	2.90	1.29	234.77	4.44	2.11	0.00	0.11	0.38	

^{*} Duplicate samples

Background Range is defined as the background mean plus two standard deviations

Table 1, continued

POND 2A					3,								
Lab ID	Sample Location	As	Ba	Cd	Cr	Co	Cu	Pb	Ni	Hg	Se	Ag	Zn
22631-51	P2-1	5	93	0.3	11	7.5	14	17	11	<0.1	<0.1	<0.5	42
22631-53	P2-2	3.1	85	1	5.8	3.7	15	9.7	7.6	<0.1	<0.1	<0.5	9
22631-54*	P2-3*	15	67	<0.2	7.2	4.7	48	34	6.9	<0.1	<0.1	<0.5	26
22631-55*	P2-3*	3.2	63	<0.2	6.1	3.1	41	<3.0	4.9	<0.1	<0.1	<0.5	16
22631-57	P2-4	0.8	260	<0.2	3.7	1.5	18	<3.0	2.6	<0.1	<0.1	<0.5	6.9
22631-56	P2-5	5	160	<0.2	8.2	8	22	19	8.9	<0.1	<0.1	< 0.5	22
22631-52	P2-6	1.6	180	0.3	8.8	5.3	16	3.4	8.9	<0.1	<0.1	<0.5	23
									,				
Background R	ange (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	NA	NA	2.3	57
Average		4.21	113.50	0.20	6.35	4.23	21.75	10.39	6.35	0.00	0.00	0.00	18.11
Standard Dev.		4.72	81.83	0.35	3.37	2.76	15.52	12.24	3.64	0.00	0.00	0.00	13.16

STOCKPILE													
Lab ID	Sample Location	As B	a .	Cd	Cr	Co	Cu	Pb	Ni	Hg	Se	Ag	Zn
22631-76	SP-1	3.2	52	1	5.8	3.2	3	8	6.8	<0.1	<0.1	<0.5	12
22631-77	SP-2	3	32	1.1	5.6	3	2.7	8.9	7	<0.1	0.3	<0.5	6.3
Background R	Range (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	NA	NA	2.3	57
Average		3.10	42.00	1.05	5.70	3.10	2.85	8.45	6.90	0.00	0.15	0.00	9.15
Standard Dev.		0.14	14.14	0.07	0.14	0.14	0.21	0.64	0.14	0.00	0.21	0.00	4.03

WINDBLO	WN												
Lab ID	Sample Location	As	Ва	Cd	Cr	Co	Cu	Pb	Ni	Hg	Se	Ag	Zn
22631-78	Wind Blow 1	22	100	0.5	12	6.5	19	25	9.1	<0.1	<0.1	<0.5	40
22631-83*	Wind Blow 2*	24	110	0.5	9.2	10	44	45	9.9	<0.1	<0.1	<0.5	77
22631-84*	Wind Blow 2*	27	110	0.6	11	11	43	53	11	<0.1	0.1	<0.5	68
Background I	Range (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	NA	NA	2.3	57
Average		24.33	106.67	0.53	10.73	9.17	35.33	41.00	10.00	0.00	0.03	0.00	61.67
Standard Dev	/.	2.52	5.77	0.06	1.42	2.36	14.15	14.42	0.95	0.00	0.06	0.00	19.30

Lab ID	Sample Location	As	Ba	Cd	Cr	Co	Cu	Pb	Ni	Hg	Se	Ag	Zn
22631-79	S-1	3.6	25	1.1	5.8	3.2	3.4	11	6.7	<0.1	<0.1	< 0.5	8.
22631-80	S-2	44	36	1.5	5.9	4.1	37	53	7.3	<0.1	0.1	<0.5	5.
22631-81	S-3	660	39	7.5	7.8	11	180	84	12	<0.1	0.2	<0.5	690
22631-82	S-4	1.9	67	0.2	5.4	3.4	6.2	<3.0	5.8	<0.1	<0.1	<0.5	1.
Background F	Range (upper end)	7.2	152	0.7	19	9.7	20	12.9	18	NA	NA	2.3	57
Average		177.38	41.75	2.58	6.23	5.43	56.65	37.00	7.95	0.00	0.08	0.00	-
Standard Dev		322.34	17.88	3.33	1.07	3.74	83.63	38.77	2.77	0.00	0.10	0.00	332.90

A. . . X. X. X

* Duplicate samples

Background Range is defined as the background mean plus two standard deviations

in the sample from BG-7 (0.7 mile from the facility) are similar to concentrations in samples collected closer to the facility

Table 1.

4.2 Metals Analysis

Of the 12 metals analyzed, all were detected at concentrations exceeding laboratory reporting limits in at least some areas of the facility, though mercury and selenium were not detected at most sites. The highest detected concentrations were generally found in the process plant area, especially around the ore feed hopper and conveyor. High concentrations were also reported in samples from the north side of the primary ore storage area (Ore Storage Area 1). Metals results are summarized in Table 1. The laboratory reports are in Appendix D.

4.3 Total Recoverable Petroleum Hydrocarbons

Eleven samples from the process plant area were analyzed for TRPH concentrations. Six of these samples are composites of two to four discrete sample locations. Composites were analyzed when several samples were collected within one area where operations appeared to be consistent around the area. For instance, two samples collected from the machine wash area were composited, and two samples from the solvent tank area were composited.

The highest TRPH concentrations were found in the machine wash area (580 ppm), the parking area (360 ppm), and the solvent tank area (110 ppm). The remaining samples contained concentrations between 9 and 54 ppm. The results are summarized on Table 2. The original laboratory report is in Appendix D.

4.4 Gross Alpha/Beta Radiation

Four composite samples were analyzed for gross alpha and beta radiation. Two of the composite samples are from the plant area and two are from Ore Storage Area 1. The four samples contain relatively low levels of radiation, with gross alpha radiation reported up to $10 + \frac{1}{6}$ pCi/g and gross beta radiation reported up to $18 + \frac{1}{6}$ pCi/g. Results are summarized in Table 3. The original laboratory report is in Appendix D.

TABLE 2 SURFACE SOIL SAMPLES - TRPH (mg/kg - ppm) Hecla Mining Company, Apex Plant

St. George, Utah

Lab ID	Sample Location	TRPH Concentration	Comments	Surface soils cleared*
L22631-1	Plant 1	360	Parking area	no
L22631-13	Plant 12	25	Gravel road, east of plant	no
L22631-25	Plant 23	9	Gravel road, south of plant	no
L22631-28	Plant 25	54	Gravel road, west of plant	no
L22631-88	Plant 2 & 13 Composite	580	Machine wash area	no
L22631-89	Plant 3	< 5	Solvent tank area	yes
L22631-90	Plant 4 & 5 Composite	110	Solvent tank area	no
L22631-91	Plant 7, 8 & 9 Composite	20	Gravel surface, plant interior	yes
L22631-92	Plant 10 & 11 Composite	33	Gravel surface, n. side of plant	no
L22631-93	Plant 15, 16, 17 & 18 Comp.	35	Ore feed area	yes
L22631-94	Plant 19, 20, 21 & 22 Comp.	15	Fine ore conveyor area	yes

TP Bayer and

TABLE 3 SURFACE SOIL SAMPLES - RADIOLOGICAL (pCi/g)

Hecla Mining Company, Apex Plant St. George, Utah

Lab ID	Sample Location	Gross Alpha	Gross Beta	Comments	Surface soils cleared*
952182-1	Plant-15, -16, -17, -18	6.9 +/- 5.8	12 +/- 5	Ore feed area	yes
952182-2	Plant-24 and -26	10 +/- 6	18 +/- 6	Material storage, w. side plant	no
952182-3	Ore-1, -2, -3, -4	6.8 +/- 6.1	9.8 +/- 5.3	Ore storage, s. side plant	yes
952182-4	Ore-6, -7, -8, -9	7.2 +/- 6.1	15 +/- 6	Ore storage, s. side plant	yes

^{*} At some of the sites, Hecla personnel had removed approximately 3" to 12" of surface soil prior to sampling. Note - All sample locations are presented on PLates 2 & 3

^{*} At some of the sites, Hecla personnel had removed approximately 3" to 12" of surface soil prior to sampling. Note - All sample locations are presented on Plates 2 & 3

4.5 Quality Control

Several types of quality control samples were analyzed to asses the validity of the analytical results discussed in Sections 4.1 through 4.10. These include:

- Field duplicate soil samples to assess the precision of this data. The precision can be affected by laboratory methods, sampling/field protocol, and (especially in the case of soil) sample material inhomogeneity. Duplicate samples on Table 1 are designated with asterisks.
- Matrix Spike/Matrix Spike Duplicates (MS/MSD). Every 20th sample was split into three aliquots to generate both the primary sample result and MS/MSD results. The laboratory added known quantities of target analytes to two of the aliquots (the MS and MSD). The known MS/MSD samples are then analyzed and the results are used to calculate accuracy (the amount of analyte recovered during analysis, expressed as a percent 100% being completely accurate) and precision (how close the MS and MSD results are to each other, expressed a percent relative difference -0% being completely precise). The laboratory MS/MSD results (included in Appendix D with the laboratory analysis reports) indicate that laboratory results are within acceptable ranges for precision and accuracy.
- Method Blanks. Method blanks were analyzed by the laboratory to assess the
 potential that contamination of the samples occurred during sample handling at
 the laboratory.

4.5.1 Field Duplicates

The results of field duplicates indicate that precision between soil samples collected from adjacent locations is generally good. Most of the relative percent differences were better than 30%. This relative percent difference accounts for both the differences introduced by the laboratory in analyzing the two samples, and the natural difference between two soil samples due to inhomogeneity. Therefore, these results appear to be both repeatable and representative of the general soil conditions.

The relative percent duplicates (RPDs) for nine blind duplicate samples are shown on Table 4. The highest reported RPDs are for arsenic and lead on Duplicate 5 and arsenic on Duplicate 8. This is probably partly due to the greater difficulty in obtaining good recoveries for arsenic.

4.5.2 Laboratory MS/MSD Results

The laboratory reported recoveries and RPDs for five of the samples (approximately every 20th sample in the sample set). Recoveries were very good for most of the samples, generally ranging from 90% to 110%, indicating good analytical precision for the sample set.

Overall, the recoveries appeared lowest on the first sample pair they ran, with cadmium, cobalt, lead, nickel and selenium all being slightly below 90%. The only recoveries that were below 80% were selenium on pair 1, and arsenic on pairs 2 and 5. The reported recoveries for these three exceptions ranged from 74% to 78% and were within control limits for the laboratory based on historic results.

The highest recoveries were mercury in pair 3 (118% and 119%) and arsenic in pair 3 (114% and 117%).

Relative percent differences (RPDs) between the MS and MSD samples were generally within 5%, indicating good analytical precision. This indicates that the RPDs seen in duplicate samples (up to about 30%) are primarily caused by inhomogeneity in the samples and sample matrix.

4.5.3 Method Blanks

The laboratory ran five method blanks for metals and TRPH. No concentrations of any of the 12 metals or the TRPH were detected above laboratory reporting limits.

TABLE 4
SUMMARY OF QUALITY CONTROL RESULTS

DUPLICATE SAMPLES

)	EIGAT	000000000000000000000000000000000000000		LICAT	100000000000000000000000000000000000000		LICAT	(2000)	500000000000000000000000000000000000000	PLICA	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	DUP		000000000000000000000000000000000000000			0000000000000		EICAT	000000000000000000000000000000000000000	200000000000000000000000000000000000000	LICAT	000000000000000000000000000000000000000		LICAT	000000000000000
		te P3-		ા	te P3-			e Plan		**************************************	Plan	~000000000C		Plant	************	SI	te Ore		<u>ः</u>	te P1L			te P3-	2	Wit	idblow	7-2
ANALYTE	Α	3	RPD	A	# E	RPD		333	RPD			RPD	A	В	RPD	Α	В	RPD	A	E	RPD	A	В	RPD	Α	В	RPD
Arsenic	140	65	36.6	3.6	7.2	-33.3	2.6	2.7	-1.9	1200	930	12.7	36	10	56.5	2.5	3.2	-12.3	17	33	-32.0	15	3.2	64.8	24	27.0	-5.9
Barium	33	23	17.9	67	75	-5.6	76	86	-6.2	310	250	10.7	66	68	-1.5	30	33	-4.8	19	24	-11.6	67	63	3.1	110	110	0.0
Cadmium	10	7.5	14.3	0.8	1.0	-11.1	0.2	0.3	-20.0	35	30.0	7.7	1.3	0.6	36.8	1.1	1.0	4.8	1.2	1.5	-11.1	<0.2	< 0.2	NA	0.5	0.6	-9.1
Chromium	190	160	8.6	4.5	6.1	-15.1	7.8	8.4	-3.7	16	15	3.2	9.8	10	-1.0	6.4	6.9	-3.8	4.5	3.4	13.9	7.2	6.1	8.3	9.2	11	-8.9
Cobalt	69	53	13.1	3.5	6.1	-27.1	4.4	5.7	-12.9	280	250	5.7	100	85	8.1	3.2	3.3	-1.5	3.5	3.4	1.4	4.7	3.1	20.5	10	11	-4.8
Copper	40	26	21.2	2.2	4.2	-31.3	7.1	7.5	-2.7	4400	2700	23.9	74	40	29.8	3.4	4.6	-15.0	10	19	-31.0	48	41	7.9	44	43	1.1
Lead	10	9	2.2	6.6	9.7	-19.0	7.2	8.2	-6.5	2500	2300	4.2	89	33	45.9	9.6	9.4	1.1	11	12	-4.3	34	<3.0	NA	45	53	-8.2
Nickel	86	64	14.7	5.5	8.1	-19.1	7.1	7.6	-3.4	110	88	11.1	16	13	10.3	7.1	7.3	-1.4	5.5	5.3	1.9	6.9	4.9	16.9	9.9	11	-5.3
Mercury	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA	0.4	0.4	0.0	<0.1	< 0.1	NA	<0.1	< 0.1	NA	< 0.1	< 0.1	NA	< 0.1	< 0.1	NA	<0.1	<0.1	NA
Selenium	<0.1	< 0.1	NA	< 0.1	< 0.1	NA	< 0.1	< 0.1	NA	1.5	2.0	-14.3	< 0.1	< 0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	0.1	NA
Silver	0.5	< 0.5	NA	<0.5	< 0.5	NA	1.5	1.7	-6.3	9.5	10	-2.6	0.7	1.0	-17.6	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA
Zinc	6400	4200	20.8	59	150	-43.5	18	19	-2.7	4900	4400	5.4	82	63	13.1	9	12	-14.3	11	22	-33.3	26	16	23.8	77	68	6.2

RPD: Percent duplicate difference.

LABORATORY QUALITY CONTROL

	Lab	# 2263	1-01	Lab	# 2263	1-21	Lab	# 2263	1-41	Lab	# 2263	1-61	Lab	# 2263	1-81
	%	SR		%	SR		%	SR		%	SR		%	SR	
ANALYTE	min	max	RPD												
Arsenic	91.0	101.0	5.3	74.6	74.6	0.0	114.8	117.6	2.4	89.6	95.5	1.8	78.5	83.9	-1.9
Barium	100.0	101.8	-0.8	103.6	103.6	0.0	101.8	105.5	-1.0	103.6	107.3	1.6	106.2	108.7	1.4
Cadmium	88.9	89.8	-0.9	92.2	94.0	1.8	96.7	97.5	0.7	92.4	94.7	2.4	94.9	97.3	2.2
Chromium	91.3	92.2	-0.8	93.8	95.8	1.7	97.8	98.7	-0.7	95.1	97.8	1.9	96.7	99.5	2.4
Cobalt	89.1	89.1	0.0	90.9	92.7	-0.3	98.4	101.5	2.7	92.0	94.5	1.6	94.9	97.6	2.3
Copper	101.8	103.6	-0.3	105.5	110.9	2.0	108.2	108.9	-0.5	106.7	109.8	2.5	101.8	105.5	-0.8
Lead	89.1	89.1	0.0	92.7	96.4	1.0	99.1	99.8	0.5	94.9	96.5	1.5	94.5	96.4	0.7
Nickel	88.4	88.9	-0.4	91.8	93.5	1.3	94.9	96.0	-0.9	91.3	94.0	1.7	94.0	96.9	2.5
Mercury	112.8	116.2	2.9	89.3	93.2	-4.2	118.0	119.0	0.8	95.2	96.2	1.0	95.3	97.7	2.4
Selenium	75.2	77.0	-2.4	85.2	86.0	0.9	101.6	104.0	-2.3	92.4	94.2	-1.9	93.6	96.6	-3.1
Silver	105.5	108.9	3.2	99.1	100.5	1.4	106.7	115.3	7.7	99.1	107.1	7.8	101.6	106.4	4.5
Zinc	96.4	98.2	-0.3	100.0	103.6	1.1	101.8	101.8	0.0	89.1	101.8	0.5	94.5	94.5	0.0

%SR: Percent spike recovery

6.0 LIMITATIONS

This report was prepared in general accordance with the accepted standard of practice which exists in Utah at the time the sampling was performed. Care was taken during sampling to collect representative samples. If the client wishes to reduce the uncertainty beyond the level associated with this survey, Kleinfelder should be notified for additional consultation. This report is not intended for use as an abatement removal plan or specification document.

Our firm has prepared this report for the Client's exclusive use for this particular project and in accordance with generally accepted practices within Utah at the time of the investigation. No other representations, expressed or implied, and no warranty or guarantee is included or intended.

REFERENCES

- Hecker, S., 1993, Quaternary Tectonics of Utah with emphasis on earthquake-hazard characterization: Utah Geological Survey Bulletin 127, 157p., 2pls. In pocket, scale 1:500,000.
- Hintze, L.F., 1986, Stratigraphy and structure of the Beaver Dam Mountains, Southwestern Utah, in Griffen, D.T., and Phillips, W.R., editors, Thrusting and extensional structures and mineralization in the Beaver Dam Mountains, Southwestern Utah: Utah Geological Association Publication 15, p.1-36, 2pls. In pocket, scales 1:48,000 and 1:24,000.

Sampling and Analysis Plan Hecla Mining Company, Apex Plant St. George, Utah

May 18, 1995

Copyright 1995 Kleinfelder, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited. See "Application For Authorization To Use" located at the end of this document if use or copying is desired by anyone other than the Client and for the project identified above.

Prepared For:

Hecla Mining Company 6500 Mineral Drive Coeur d'Alene, Idaho

Kleinfelder File No. 31-6930-60

Sample and Analysis Plan Hecla Mining Company - Apex Plant St. George, Utah

Prepared by:

Renee D. Zollinger, R.G. Senior Geologist

Hiram Alba, P.E. Branch Manager

KLEINFELDER, INC. 2749 E. Parley's Way, Suite 100 Salt Lake City, Utah 84109

May 18, 1995

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRO	DDUCTION1
	1.1	Background1
	1.2	Objectives
2.0	FIELD	SAMPLING PLAN2
	2.1	Field Preparation2
	2.2	Sample Locations
	2.3	Surface Soil Sampling Protocol
	2.4	QA/QC Sample Collection
	2.5	Sample Handling
	2.6	Decontamination
3.0	LABO	RATORY ANALYSIS PLAN 6
	3.1	Sample Analysis 6
	3.2	Laboratory Quality Control
	3.3	Data Validation
PLAT	<u>ES</u>	
1	Facilit	y Location Map
2	Site M	•
<u>APPE</u>	NDICE	<u>S</u>
Á	Field I	Documentation Forms
В	Labora	atory Analyses and Associated Reporting Limits
С	Applic	eation for Authorization to Use

1.1 BACKGROUND

Hecla Mining Company's Apex Plant is located approximately 10 miles west of St. George, Utah. The plant has been operated by Hecla Mining Company for approximately six years. Prior to 1989, the Apex Plant was operated for four years by the St. George Mining Company to process ores mined from the Apex Mine. The St. George Mining Company primarily extracted Germanium (Ge) and Gallium (Ga) from the ore. Hecla Mining Company began extracting Ge and Ga from the ore, but has primarily been producing cobalt since 1992. Currently, the cobalt is extracted from spent petroleum catalysts rather than from ore.

The Apex Facility is approximately 100 acres in size. There are four historic tailings/process ponds and a surge pond that were cleaned out between 1990 and 1992, and two areas where ore was stored. One additional pond (Pond 2) is currently used to store the material that was removed from the other five ponds. This pond will likely be capped, and is not part of the proposed sampling plan.

1.2 OBJECTIVES

Hecla Mining Company wishes to assess the potential that metals may have impacted surface soils at the Apex Plant facility. Samples will be collected from areas where ore tailings, or process wastes were stored, from the area where ore and other material was processed and from general areas around the plant site which may be affected by wind blown metals or spillage. Additionally, surface soils in areas around the plant buildings where kerosene-based solvents were used will be assessed for total petroleum hydrocarbons. Some of the samples collected will be analyzed for alpha/beta radiation to confirm that no radioactive materials have been processed at the site.

2.1 FIELD PREPARATION

Before performing work in the field, environmental staff will review the scope of work, coordinate the work to be done with the project manager, assemble the necessary sample containers, and clean equipment to be used in the field. A site-specific health and safety plan will be prepared that describes expected and potential hazards and appropriate emergency procedures and contacts. The health and safety form that will be filled out and used by the field crew is contained in Appendix A. The Hecla Site Manager will be contacted in advance to coordinate the time and location of sampling activities.

2.2 SAMPLE LOCATIONS

Several areas will be targeted for sampling to assess current site conditions. The areas to be sampled are discussed below and are shown on Plate 2.

Tailings/Process Ponds - Five ponds which were used to hold tailings or processing by-products and wastes are now cleaned out. These ponds are as follows:

Pond Name	Historic Contents	Liner				
2A	Ore Tailings	Hypalon				
1C	Arsenic Still Bottoms	Spray-on Asphalt				
3B North	Zinc Sulfate or Iron Sulfate	Spray-on Asphalt				
3B South	Zinc Sulfate or Iron Sulfate	Spray-on Asphalt				
Surge Pond	Various	Hypalon				

The contents of the ponds and pond liners were removed to Pond 2 in 1990 through 1992.

Surface soils from the bottom of each pond will be sampled. Four samples will be collected from the bottom of each pond, and two samples will be collected from half way up the berm around each of the five ponds.

Ore Storage Areas - Ore was placed in a large storage area east of the plant and a small area north of the plant. Eight samples will be collected from within the large storage area. Two additional samples will be collected from the smaller area where ore was also stored.

Plant/Process Area - Ore was processed in the plant area. Processing involved feeding ore into the plant through a hopper located near the large storage area. From there, the ore was transported to a shaker screen and ball mill. The pulverized ore was then placed in approximately 15 tanks where sulfuric acid was added to dissolve the ore. A variety of extraction processes, including a kerosene-based solvent extraction process, were then used to recover metals of interest. Wastes and by-products were piped (via above-ground piping) to the process ponds described above.

Approximately 20 to 30 surface soil samples will be collected in the plant area, including around the perimeter of the paved plant area and within any unpaved portions of the plant area. In general, four samples will be collected from each identified process area (e.g., around the solvent extraction unit, in the feed areas, etc.). More samples will be collected in areas that are large or that appear to be highly variable in nature.

General Site Area - Approximately 20-30 surface soil samples will be collected from other 'non-target' areas of the property, such as roadways and the area around the ponds. These samples will be collected primarily to assess the potential for impacts by windblown contaminants. Random sample locations will be selected in the field, based on access and site conditions. Locations will be selected to provide general overall site coverage.

Background - A minimum of four soil samples will be collected to assess background metals concentrations. If heterogeneous soils are encountered, up to eight background samples may be collected. Two background soil samples will be collected from the topsoil stockpile created when the plant area was initially excavated in approximately 1985. This stockpile is located just north of the plant area. Two additional samples will be collected from undisturbed areas outside the Apex facility that are unlikely to be impacted by site activities. If the in-place soils are notably heterogeneous, up to four additional samples will be collected from around the facility.

2.3 SURFACE SOIL SAMPLING PROTOCOL

At each sample location, the upper 1 to 2 inches of loose soil and debris will be cleared away. A clean 6-inch long, 2.5-inch diameter stainless steel tube will then be driven vertically into the ground in order to collect a relatively undisturbed sample. The soil around the sample tube will be carefully loosened with a shovel or hand auger so that the sample tube can be removed from the ground.

Once the tube is extracted from the ground, the ends of the tube will be covered with Teflon and sealed with tight-fitting plastic caps. The top and bottom of the tube will be marked "T" and "B", respectively.

After each sample is collected, it will be individually labeled. The label will include Kleinfelder's name, job number, the date and time the sample was collected, the employee number of the individual who performed the sampling, and a unique sample identification number. A custody seal will also be placed on the sample in such a way that any attempt to tamper with the sample is easily visible.

2.4 QA/QC SAMPLE COLLECTION

Several types of quality assurance/ quality control (QA/QC) samples will be collected so that the quality of the analytical data can be assessed. These samples are as follows:

Blind Duplicates - At approximately 10% of the sample locations, a duplicate surface soil sample will be collected. Duplicate samples will be collected by driving a second sample tube into the ground adjacent to the primary sample tube. These duplicate samples will be blind (i.e., they will not be identified as duplicates to the analytical laboratory). The degree to which analytical results for duplicate samples are repeatable is a measure of both laboratory precision and sample representativeness.

Matrix Spike/ Matrix Spike Duplicates (MS/MSD) - In order to assess laboratory precision and accuracy, every 20th sample will also be run as an MS/MSD sample. To obtain these results, the laboratory will digest three aliquots from a single sample tube. The first aliquot will be analyzed and reported as the primary sample. The next two aliquots will have a know amount of the requested analytes added (spiked). The laboratory will then analyze these two aliquots (referred to as the matrix spike and the matrix spike duplicate).

The results of the MS/MSD samples are compared with the known (spiked) concentration and with each other to assess accuracy and precision, respectively.

Field Blank - One field blank will be prepared by pouring deionized water into appropriate sample bottles. This sample provides information on whether the primary samples are being impacted during collection by airborne/fugitive metals, or whether the sample set may be impacted during sample handling, transport, or analysis.

All QA/AC samples will be collected, handled, and transported with the primary samples.

2.5 SAMPLE HANDLING

After securing and labeling each sample, sample information will be recorded on the chain-of-custody and on a Sample Control Log. Each sample will then be immediately stored in an iced cooler for transport to the analytical laboratory. The chain-of-custody form will accompany the cooler at all times. The chain-of-custody form includes Kleinfelder's name, address and telephone number, the date and time the samples were collected, the number of containers each sample occupies, and the analyses for which the samples are being submitted. The chain-of-custody form is signed by each person who handles the samples, including all Kleinfelder employees and the analytical laboratory when the samples are delivered. Examples of the chain-of-custody form and a Sample Control Log are contained in Appendix A. The sample control log identifies sample location information for each sample on the chain-of-custody. This sample location information is not provided to the analytical laboratory.

2.6 DECONTAMINATION

To reduce the potential for introducing contamination into the samples, the sample tubes will be cleaned prior to sample collection. The tubes will be cleaned using a detergent wash, followed by a steam rinse. No other equipment will be used that will come in contact with the soil samples.

3.1 SAMPLE ANALYSIS

One soil sample from the 0 to 6-inch depth interval at each location will be submitted to American West Analytical Laboratories in Salt Lake City, Utah for analysis. American West will be asked to use soil from the top 2 inches of the sample tube when they take a portion of the sample for digestion/analysis of metals. The bottom four inches of soil in tubes from targeted process areas in the plant will be composited and analyzed to confirm that metals do not extend to that depth. The samples will be submitted for analysis of pollutant metals. Selected samples will also be analyzed for total petroleum hydrocarbons (TPH) by infrared radiation (IR) and for gross alpha/beta radiation. American West Analytical Laboratories is certified by EPA and the State of Utah for the required analyses, with the exception of gross alpha/beta radiation. This analysis will be performed by Berringer Laboratories of Golden, Colorado. The analytical methods and other sample requirements are summarized on Table 1.

TABLE 1
LABORATORY ANALYSES AND REQUIREMENTS
SOIL SAMPLES

Analyte	Analysis Method	Sample Container	Preservative	Holding Time+	Storage Temperature	Reporting Limit**
Arsenic	7060	SS tube*	None	6 months	4°C	0.5
Barium	6010	SS tube	None	6 months	4°C	0.5
Cadmium	6010	SS tube	None	6 months	4°C	0.2
Chromium	6010	SS tube	None	6 months	4°C	0.5
Cobalt	6010	SS tube	None	6 months	4°C	0.5
Copper	6010	SS tube	None	6 months	4°C	0.5
Lead	6010	SS tube	None	6 months	4°C	3.0
Mercury	7471	SS tube	None	28 days	4°C	0.1
Nickel	6010	SS tube	None	6 months	4°C	0.5
Selenium	7740	SS tube	None	6 months	4°C	0.1
Silver	6010	SS tube	None	6 months	4°C	0.5
Zinc	6010	SS tube	None	6 months	4°C	0.5
TPH	418.1	SS tube	None	14 days	4°C	5.0
α Rad.	9030	SS tube	None	None	4°C	2-4 pc/g
β Rad.	9030	SS tube	None	None	4°C	3-6 pc/g

^{*} SS tube = Stainless Steel tube

^{**} Expected reporting limit, in the absence of matrix interference, in mg/kg

3.2 LABORATORY QUALITY CONTROL

The laboratory will provide Method Blank (MB) and Laboratory Quality Control Sample (LQCS) data associated with the sample results so that the accuracy and precision of the results can be assessed.

3.3 DATA VALIDATION

The field documentation and laboratory QC data will be reviewed to assess the validity of the results for various applications. The data will be assigned Kleinfelder's validation qualifiers, as shown on Table 2. The validation process will indicate the type of applications the data may be used for in future investigations, if necessary.

TABLE 2 DESCRIPTION AND CROSS-REFERENCE FOR VALIDATION QUALIFIERS

KLEINFELDER	EPA	
VALIDATION	VALIDATION	MEANING OF KLEINFELDER VALIDATION QUALIFIER
QUALIFIER	QUALIFIER*	·
none	none	Valid, no qualifier attached, result > CRL, usable in quantitative risk assessments and other Level I through IV applications
none	U	Valid data, "none detected". May be used in quantitative risk assessments and other Level I through IV applications
1a	J	Estimated quantity, result is > IDL but < CRL Data is usable in quan. risk assessments & other Level I - IV
1b	J ·	Estimated quantity, lab. QA samples out of precision limits Data is usable in quan. risk assessments & other Level I — IV
10	J	Estimated quantity, RL raised due to matrix interference Data is usable in quan. risk assessments & other Level ! - IV
1d	J	Estimated quantity, field QA samples out of precision limits Data is usable in quan. risk assessments & other Level I — IV
2a	R	Rejected: Common lab contaminant, result is < 5*RL or < 10*blank concentration (described as commen in RAGS)
2b	R	Rejected: Suspected lab contaminant, result is < 5*RL or < 5*blank concentration
2 c	R	Rejected for quantitative risk assessment: quantitation limits raised unacceptably high due to matrix or analyte interference This data may be used for some screening purposes and for planning additional or confirmation field investigations
, 2d	R	Rejected for quantitative risk assessment, lab or field QA sample too far out of project precision limits Subjective decision, to be made by risk assessor
3a	none	May be used in quantitative risk assessment. Assessor may use judgement, depending on data qualified as "2a". Indicates that result is a common lab. contaminant, but result is > 5*IDL and > 10 * blank concentration
3b	none	May be used in quantitative risk assessment. Assessor may use judgement, depending on data qualified as "2b". Indicates that result may be a lab. contaminant, but result is > 5* IDL and > 10 * blank concentration
4	N	Assessor must use judgement on whether to include in quantitative risk assessment: Tentatively Identified Compound
5a	J	Estimated quantity: Missed holding times, assessor judged data to be useful in risk assessment due to little expected effect
5b	R	Rejected data: Missed holding times, assessor judged data to be compromised due to expected effect
6a	R	Rejected in quantitative risk assessment: sample is a true duplicate of another sample
6 b	none	Acceptable for use in quantitative risk assessment. Sample is a field "duplicate" but results indicate that sample is independent of primary sample

^{*} EPA Validation Qualifiers for quantitative risk assessment are listed in RAGS, Exhibit 5-5

Project Name:	Project Number:	Date(s) of Field Work:
---------------	-----------------	------------------------

	SAMP	and the second s							
Time	Date	Field Sample Number	Sample Location	Matrix (soil, etc)	No. of Containers	Container Type	Preservative	Filtered? Y/N	Notes
				·					
							1		
-						<u> </u>			
				· .					
									-
	art and a supply of the supply						· .		
						-			
				,					
			,						

KLEINFELDER

L.P. NO.		PROJECT N						NO. OF	448.	2/2/2				/ /-					
DATE MM/DD/YY	SAMI TIME HH:N	PLE I.D. MM:SS		·.	SAMPL	E (.D.		TAINERS				_		_		//	//	_	REMARKS
									Π	Π									
																		•	
									Π						·				
							·												
											-								
								·	L										
								<u> </u>											
							•												
					_		;	,											
					_														
									匚										
-								<u></u>	L										
Relinquished	by: (Si	ignature)		Date	Time	Receive	ed by: (Signature)		Rer	marks									 Send Results To KLEINFELDER
Relinquished	Refinquished by: (Signature) Date/Time Recoived by: (Signature))											KLEINFELDER 2605 EAST 3300 SOUTH SALT LAKE CITY, UT 84109 (801) 466-6769		
Relinquished by: (Signature) Date/Time Received for Laboratory by (Signature)					ry by:														
M-80				White :	Comples				Can	sry · Ro	turo (Conv T	a Shir		 				 Pink Lab Copy NO 0117

HEALTH AND SAFETY PLAN

Project No. 31-6930-60	Date	5/19/95
Client Hecla Mining Com	mpany Address_	6500 Mineral Drive, Coeur d'Alene, Ida
Client/Site Contact Jim Weber/	Penny BassettClient/Site	Phone Number (801) 628-1635
Job Location Hecla Mining Con	mpany, apex Plant, St. (George, Utah
Work Objectives <u>Collect Soil</u>	Samples	
Key Individuals Project Mana	ager Renee Zollinger	
Site Health a	and Safety Daniel Horns	5
Preparer Daniel Horns	Reviewer/A	Approver
Hospital/Clinic Dixie Regional	Medical Center	Phone 634-4200
Hospital Address 544 South 400	East	
Paramedic 911	_Fire Dept. 911	Police Dept. 911
Emergency/Contingency Plans	Apply first aid on-site	e, phone 911, transport to hospital
or wait for ambulance, as n	needed.	
15 Minute Eyewash	x Fire Extinguish	er _x First Aid Kit
Site Control Measures		
,		
Personal Decontamination Proced	lures	
	CHEMICAL HAZAI	RDS
Chemical Name (CAS#)	Expected Water/	Health Hazards
None expected	Soil Concentration	
	•	
	•	· · · · · · · · · · · · · · · · · · ·
		•

PHYSICAL HAZARDS										
x Heat x Slip,	Trip,Fall	x Excavations/Trenches								
Cold Nois	e	Moving Equipment								
Rain Und	erground Hazards	x Other Hand tools								
FogOver	rhead Hazards									
PERSONAL PROTECTIVE EQUIPM	ENT- R = Req	uired A = As Needed								
Hard Hat	R Safety Eyewea	R Safety Eyewear (Type)								
R Safety Boots	Respirator (Ty	pe)								
Orange Vest	Filter Type									
Hearing Protection	Gloves (Type)									
Tyvek Coveralls	Other									
5 Minute Escape Respirator										
MONITORING EQUIPMENT										
Organic Vapor Analyzer	PID with lamp	ofeV								
Oxygen Meter	Draeger Tube									
Combustible Gas Meter	Passive Dosimo	eter								
H ₂ S Meter	Air Sampling P	ump								
W.B.G.T.	Filter Media									
ONSITI	E SAFETY MEETING ATT	ENDEES								
Signature	Name (Printed)	Date								
		·								
•	<u></u>									
TATE	PDCONAL AID MONUTORS	NC								
Sample #	ERSONAL AIR MONITORI	·								
	-									
Name	,									
DateOff		O#								
TIMIC OII OII		Off								

Project Name: Hocla / Apr.

Project Number: 31-693060

Date(s) of Field Work: 5/23/45

	SAM	PLE DESCR	IPTION		SAMP	LE CONTA	INER		X CH
Time	Date	Field Sample Number	Sample Location	Matrix (soil, etc)	No. of Containers	Container	Preservative	Filtered? Y/N	
8:45	5/23/9	5 HM6523 95-01	Br Stouth	50.1	-1	Stee! Tube	N	N	Notes Scura
9:05	5/23/41	4M 0523		c ./		stee/			*
9:30	11	HM0523		501/	1,	ruse	<i>N</i>	~	for of korosone toute
9:35	11	HW0523 95-04	20	-	11	١.	C,	٠,	+ East of Korosone tours DV. U + DVP OF D DV. U
9:50	(,	440523 45-05 440523	Hant y	/ 1	٠,	۲,	۲.	(1	Fast of Kerosono
10:00	''	95-06 Hm0523	Plant 5	11	'(1.		٠,	Bink spots a soil seraped
10:15	11	95-07 HM0523	Plant 6	(,	۲,				t cleared split Driven
10:30		95-08 HMO523	Plant 7	- \	11	۲.		۲,	TPH (Stamed Scraped
10:50	11	45-04 HM0923 95-10	Plant8	//	11	. 11	11	11	* Scryed
11:00	ц	HM0725 95-11	Plant 10	```	(1)	((St-uped
11:10	11	HM 0523 95-12	Plant 11	"	11	11	11	1/.	
11:20	11	4m0523	Plant 12	.,	٠,	*1			sirgled
1:30		Hm0523	Plant 13						Avea 16d been cleared icraped Sp Next to concrete pady not icraped Sp DUPS on map.
1150	()	95-15 Hm0523	Plant 13	``					TPH (near Edgined soils) Scrapped
1,70		95-16	Plant 14		` .	**	'.	''	Cleared

Project Name: Hecla / Apex Muie

Project Number: 31-693060

Date(s) of Field Work: 5/23/97-

		SAMP	LE DESCR	IPTION	- N. A.	SAMP	LE CONTA	NER		1
	Time	Date	Field Sample Number	Sample Location	Matrix (soil, etc)	No. of Containers	Container	Preservative	Filtered? Y/N	Notes
	12:00	5/23/95	HM 0523		Soil		Steel Tube	N	N	Cleared, Scraped
	12:05	//	HM 0523	Plant16	411	11	11	11	11	Clearant, Scrafted
	12:10	5/23/95	HM0523 45-19	Plant 17	//	11	11	11	1	+ Scruped.
7	12:15	11	HM0523 95-20	Plant 18	"	1	"	12	11	Clearel, Scrupteri
7 2 2	12:50	C)	440523 95-21	Plant 19	. 1	, .	١.	١,	``	+ Cleave 8, scropes
1	12:55	I.	HM0523 95-22	Plan + 20	4.6	١,	٠,	٠,	(,	+ ',
	13:00	• (4mosz3 95-23	Plant Zi	`.	1,	۲,	`.	٠,	+ 4
	13:05	((4 mose 3 95-24	Plant 22	- \	٠,	~;	, ,	,,	+ /1
/	13:10	15	4M0523 95-25	Plant =3	64	1,	71	17	17	+ 11
_	13:15	",	4m0523 95-26	islant 23		١,	`,	(1	``	Τ ',
	13:20	11	45-27	Plant 24	٠, ((\	* ` `	15		
	13:25	11	HM0523 95-28	Plant 25	11	11	11	11	11	+ Not cleaved, scraped Nour "Body residual "storage (Cobold poods") + Cleared, Scraped
<u></u>	13:40	//	4M0523 15-29	Plantal	//	//	11	11		+ Scraped
	14:00		HM0523 95-30	ore 1	()	``	٠,	()	()	* Cleaved, Scraped
	14:05	()	4mores 95-31	ove 2	~1	٠,	٠,	(,	(1	* Cleared, scraped
	14:05	11	4M0523	ore 3	1	/	11	//	11	* Wented, Scraped
	14:10		H-40527 45-13	ore 4	1	1	/	//	//	* clearly scraped
	14:15	,	Field Blank	Field Blank	Water	2	802 116 ter			
		(cleared =	topsoil ha	d been	removeh				

cleared = topsoil had been removed

Scrope i = sample collected by loosening sail w/ chisely collecting loose soil by kand

Project Name: 31-693060

Project Number:____

Date(s) of Field Work: 5/23/45

	SAME	PLE DESCR	IPTION		SAMP	LE CONTAI	NER		
Time	Date	Field Sample Number	Sample Location	Matrix (soil, etc)	No. of Containers	Container	Preservative	Filtered? Y/N	
14:35	5/23/45	HM0523 15-34	ove5	Soil)	5.5. Tube	4°C	N	Scroped, cleaned
14:45	h	4morz3 95-35	ore 6	(("(٠,	((٠,	+ " "
14:50	11	45-36	ore6	(,	4	*(\ 1	+ Dons
14:55	- 11	4m0523	Ove 1	٠,	```	۲,		11	7 !!
14:55	1	HM0523 95-38	ore 8	1	-1	"	"	11	therapel dian
15:05	11	470523	oreg	11	11	11	11	4	Trest worth of lone Piñon tree
15:40	11	AMO523 95-40		11.	*	11	7	1	Measured from NE conser st Cab bldg Tover, Cleaned
15:40	11	HM0523		1/	//	11	11	1	Driver Cleaned
15:50	11	49-42	BEY	//	1	//	1/	11	+ Driver , duy 8" before Sampling
16:00	//	49-43		4	1	"	-/	"	+ Driver, duy 8" sixer Sandles
16:30	'\	95-44	P3-1	'(8	٠,٠	r	1,6	* Clemed, Scraylod
16:35	11	1-10923 95-46	P3-2	1	4	11	"	11	* cleared, Serance
16:40	//	45-45	P3-2	//	//	11	11	11	* clearly Sereper DUPS
16:45	//	45-47	P3-14	11	//	11	11	11	* cleand being pel
16:55	. ,	4MO523 95-48		f e	1.0	۲,	٠,	''	* ` ' '
17:00			86-3	۲,	1.	ci.	τ,	(,	t Dug 2 12" wy shoult 4" wy Clean chisel. Glected samples
17:10	1,	11m0523	BG-4	٠,	۲,	1,	L	4	by daving tober

f squeme

Project Name: He cla Mining

Project Number: 31- 693060

Date(s) of Field Work: 5/24/95

		NED	LE CONTAI	SAMP	SAMPLE DESCRIPTION									
		MEN	OUNTAI		Field Sameta S									
	Filtered?	Preservative	Container Type	No. of Containers	Matrix (soil, etc)	Sample Location	Sample Number	Date	Time					
+ Scraped, cleaned	1/N	ameservative	5.5 tube	l	Soci	P2-1	H mosz #	5/24/95	7:30					
			-1	1	Soil	P2-6	45-02	(1	7:35					
+ scraped, not cleaned Friven Cleaned				`1	11	PZ-Z	4 mosz4 95-03	"	7:40					
* Scraffel, Change		//	//	11	//		HM0524 45-04	"	7:45					
E SUMPA Cleaned DUPS		11	4	11	11	P2-3	H-n 0924 49-05	11	7:50					
+ Priva		"	<i>n</i>	//	11	P2-5	4M0524	//	7:99					
kgcraped, Cleared			1	11	/1	P2-4	Homa Co 11	11	8:00					
the rest cleared			11	11	11	P3-4	HM0524	<i>,</i> //	8:15					
# Scrapel Clasted			"	11	1		44-09-4	11	3:20					
			· (**	P3-13	HMOTZY 15-10	21	8:30					
x scraped, not cleaved x scraped, cleaved x reaped, cleared			-((1	. (P3-6	H MOSZY 15-11	11	2,40					
+ related closed			11	"	11	P3-7	4m0924 45-12	h	8:45					
* Swaper			1	"	//	0	1140524	11	8:50					
11 11			- 1		**	P3-11	H MOTZU	(,	9:00					
& Stundent Clare 1			6.7	~	e (P3-10	45-15	(-	9:05					
f Scroped, Cleaved				-	1.	P3-9	4 m 05 24 95-16	. (9:10					
· Dups				i,	(-	P5-9	4 m 0524 99-17		9:15					
10 60				11	- c,	P3-9	45-18	4	9:20					

Project Name: Hecla Mining

Project Number: 31 - 693060

Date(s) of Field Work: 5/24/45

		SAMP	LE DESCR	IPTION		SAMP	LE CONTAI	NER		
	Time	Date	Field Sample Number	Sample Location	Matrix (soll, etc)	No. of Containers	Container		Filtered? Y/N	
69	9:30	5/24/97	HM 0524	P1-1	50,1	1	stery Tuha	N	W	* Scriped classed
-	9:35	5/14/45	1445-2	-	11		"	11	1	+ suraken chared scriper
	9:45	5/4/45		P1-6	11	*	er	r	"	* Sempod.
	9:50	//	470524 95-2L	P1-3	11	11	1	11	/	of secuped cleared
	9:55	11	1+ mos 24 45-23	P1-4	//	11	"	"	11	* Scraped, Cloavery
1	10:00	11	14mos 24	P1-5	//	11	11	r	11	* semped
75	10:07	11	11/10/21/	11-5	11	"	ø	*	•	* Est semped Dupes
-	10:15	//	45-26 HMO524	21-1	11	n	41	1	-	* East facing stock pile face 270' NW of NW corner
77	10:20	1	75.27	SPL	11	N	1	-	"	ox fond Measured when
-			17/MD 152 V	Wind blow		-				Hisporal of Pond Hisporal 20 South of SP2
}	10:40	1	05-28	1	11	G	11	11	1	of Pond 1 0 pt. Fressard
H		1	MMOSZY	S 1	tı	-				Pord add
H	11:00		95-29			٠,	**			from SE corner of Direct Strate
1	11:05		95-30 HNO524	5-2	11		~	-4	4	32=35" A second and cleaved
-	11:10		95-31 HM0524	5-3	^	٠,	٧.	٠,	"	53=62'
82	11:15		95-32	5-4		''		t,		54 = 90°
	11:25		15-33	wind blew	٠,	٠,	`,	~,	1,	of Surge Pend, 123 fect perpenhalus
. 7	11:30		95-34	2	~	• •	(.	**	''	to tale line. samples offer holes

Project Name: Heck Mining

Project Number: 31-6430 60

Date(s) of Field Work: 5/24/65

SAMPLE	E DESCRI	IPTION		SAMP	LE CONTA	INER		
		Sample Location	Matrix (soll, etc)				Filtered?	
11:50 5/24/95 *	4mosz4 95-35	BG-T	S	1	5.5. tobe	Wieservative	V/N	* 74' w. of Road
11:55 5/24/95	45-36	B6-6	11	11	1	11	1	120 W et Road
HO SHOW S COUNTY OF	95 87	TANGO	9	m	gg.	-	·	Botu BG-54B6-6 ave 56'
11:50 5/24/95 11:55 5/24/95 12:05 5/24/95	95-37	B6-7	11	11.	"	*	,	approx. 100 feet south of
								Notes * 74' W. FROND CENTRALE TO MILL FIND W LE TROAD FIND TO ME TO MILL Both BG-5 & Bb-6 are 56' north about voal from main Gate approx. 100 feet south of Main paved voal from St George; ~ 300' NEOF The hunoff to Hecla. + pounded (very clayey)
								+ pounded (very clayer)
								. , , , , , , , , , , , , , , , , , , ,

DAILY FIELD REPORT

The following was noted:

DATE 5/22/45	JOB NO. 31-6930 60 .001
PROJECT Heck / Apex MI	
St. Garge	
CONTRACTOR /	OWNER
WEATHER WINDY/WAVE	TEMP. 750 °at 14:00 AM °at PM
PRESENT AT SITE	Mark Christensen
TYPE OF INSPECTION Sife Tour, Su	rveyiu a

14:20- Met with Penny Basse H
- She provided a map of the plant aveg
- We took a tour of the plant area and
Pands and are sites
- We noted several largets for surpling around
the plant wear (see highlights on plant may)
- We'll have to dig through gravels to sample
at ove site south at plant
15:00 - Stanking to Survey sample sites in ponds.
we set up a coordinate base in the
northeast corner of each pond Cat the top of
the bern, inside the curve, at the center or
the curve). Sample sites were measured
relative to the northeast corner in feet
northwest (pavallel to northeast side of pond) and
feet southwest (pavalle) to southeast side
of pand. See p map an next page for
erangle
Received & Acknowledged by: Signed: KLEINFELDER
KLEINFELDER
Representing: Date:

DAILY FIELD REPORT

The following was noted:

DATE 5/22/9	JOB NO.	130 60	2
PROJECT			
LOCATION			
CONTRACTOR	OWNER		
WEATHER	TEMP.	°at °at	AM ^s
PRESENT AT SITE			
		· · · · · · · · · · · · · · · · · · ·	
TYPE OF INSPECTION			

Examp	b of measurer	neut the	e mett	rod_	
			X.	distance	
,	·	Tan	dsig	90,0	0 - Coordinate
			L		Is tance
			Point (X,	y 1	TRACE
-Ponds3	Buarth + 3Bsa			as on	e
	are the dwid			mass is	
•	o longer in -place	/		7	
	sites in Pond	33			
Site #	X(NW) bistance	Y (distance	Sife#	X	Y
P3-1	100	50	P3-8	800	(00
_P3-Z	2010	100	P3-9	900	,50
173-3	285	50	P3-10	1000	90
P3-4	400	100	P3-11	1000	-10)
123-5	500	50	123-12	700	140 Berry
P3-6	600	100	P3-13	400	-8 Sample
P3-7	700	50	13-14	100	140)
Received & Acknowled	ged by:	Signed:	(Some	1 House	4
			III CEDEII	,	
Representing:		Date:	5/22	195	
1.004				, ,	•

	>		>
age		of	_ج_

	NH.	K	L	E	I	N	F	E	L	D	E	R
--	-----	---	---	---	---	---	---	---	---	---	---	---

DATE 5/22	JOB NO.	13060	
PROJECT			
LOCATION			/ /
CONTRACTOR	OWNER		
WEATHER	TEMP.	°at	AM PM
PRESENT AT SITE			
,,			
TYPE OF INSPECTION		<u> </u>	

DAILY FIELD REPORT

The following was noted:

ife# X(NW)	for Pond IC Y (SW)		X	Y	··
P(-1 80	80	P1-4	160	160	
1-2 160	80	P1-5	120	210 >B	evu
21-3 80	160			10 5 51	
		,			

Sample	sifes for	Pond ZA				
	X(NW)		5.7ett	X	У	
P2-1	,	100	P2-4	200	200	
1>2-2	·	100	P2-5	150	300	Berm
P2-3	1072	200	P2-6	175		,

- Because Pand 3 B is so large, there are ten sample
sites, instead of the 8 that would be called far
by the sampling plan.
- Surveying was done w/ measuring tape, siting pavallel and
perpendicular to the bond edges.
- Each site was staked by a numbered stake

Received & Acknowledged by:

Signed: (aun) Horns

KLEINFELDER

2749 E. Parley's Way, Suite 100 Salt Lake City, UT 84109 (801) 466-6769

DAILY FIELD REPORT

The following was noted:

Representing:

DATE	JOB NO.					
5/23/15	3/-	9306	7			
PROJECT	1 21 0	1 70 0	<u>u</u>			
Hecla Mine						
LOCATION						
st being e						
CONTRACTOR	OWNER					
1						
WEATHER	TEMP.	°at				
1	1 '		AM			
	1	°at	PM			
PRESENT AT SITE						
Dan Horns, Mark Christenser						
"Buck" 10 Schwidt from 6+M						
TYPE OF INSPECTION						
Soil Sampling						
-ou sampling						
/ /						

- Mark + I measured sample sites for stockpile, using
intersection of SE edge of pile + road on swiside
of pile for reference.
Stock pile Samples:
Sample# location
BG (Rackground)-1 100' from road, along SE edge of pile
BG 2 325' NW along voad, 10' perpendicular to road,
along Nwedge of pole (note: the
Month west edge of pile is further St than
shown on may. Appeared to have been excavated,
Met Buck. Penny Bassett gave us a site tour
- Sampled 26 sites around the active plant, site locations
we shown on the 1"=30' map of the plant. Sites were
Surveyed relative to permanent plant fixtures (e.g. building
corners, etc.) Reference points are shown as @ on map
Received & Acknowledged by: Signed: Land Hour KLEINFELDER
KLEINFELDER

DAILY FIELD REPORT

The following was noted:

DATE	JOB NO.	
5/23/45	31-69	3060
PROJECT Hecla		
LOCATION		
CONTRACTOR	OWNER	
WEATHER	TEMP. °at	AM PM
PRESENT AT SITE		
TYPE OF INSPECTION		

			 			
- Collected	Samples from	large o	re storage	e Avea	, south o	a playt
used So	thern-mos	t of for	ur adjac	rent p	hone poles	as
a refa	reuce, X-	divection =	Per neu de	cular	to local	as Crontine no pole-live
Y= pa	wallel to	pole line	(positive =	East)	•	
•	X (naith)					
	120		ove 5		-38	
Ove 2	120	80	ore 6	-120	.62	
	120	160	- 1		162	
Ore 4		240	ores			
			lore 9	-120	36 2	
		hir restiti su				
- Collected s	emales a Co	n.a 0000	change !	in H	of plant	Used
_						(parallel to N
					<u> </u>	(1204(10) 10 10
Site *	edge),			i mue		
	8	<u>Y</u>	· · · · · · · · · · · · · · · · · · ·			
	250					
Ove 11	250	80		· · · · · · · · · · · · · · · · · · ·		
					1	
Received & Acknowledge	d by:		Signed:	Jann	& Horns	
			KL	EINFELDER		
			_	5/2/		
Representing:			_ Date:	/ -/	7)	

KLEINFELDER

2749 E. Parley's Way, Suite 100 Salt Lake City, UT 84109 (801) 466-6769

DAILY FIELD REPORT

The following was noted:

Representing:

DATE 5/23/95	JOB NO. 31-6930	60
PROJECT Hecla U.	ue	
LOCATION		
CONTRACTOR	OWNER	
WEATHER	TEMP. °at	AM PM
PRESENT AT SITE		
TYPE OF INSPECTION		

TYPE OF	INSPECTION
- Collected samples from pre-surveyed	Soil Stockpile (BG-1886-2
- Collected four samples from pre-survey	
and P3-14)	
- Collected background soil samples	from east of pond 3
(BG-3= 360 feet from SE corner	
to NE edge of good BG-4= 37	f (from st Gruen).
We will Collect another backgrown	I soil sample from
50 of the plant. There appears	s to be two principal
god sources of detribal soil: Hi	11s to west & thills to east.
BG-3 1 BG-4 should be representate	we of soil derived from
hill to east.	
- Saw two principal soil types in a	vea : a silty soundy gravel (6)
80% gravel) and a quavelly	clay (302-40% growel).
On sample control, those samples	that were graval have
a * in the hote column, gua.	velly clays have at in
the nate column.	
	· · · · · · · · · · · · · · · · · · ·
Received & Acknowledged by: Signed:	Camil Joine KLEINFELDER
· · · · · · · · · · · · · · · · · · ·	

DAILY FIELD REPORT

The following was noted:

DATE 5/23/95	JOB NO.	3	
7/23/4)	31-69	3060	<u>,</u>
PROJECT			
LOCATION			
CONTRACTOR	OWNER		
WEATHER	TEMP.	°at	AM
		°at	PM
PRESENT AT SITE		·	
	···		
TYPE OF INSPECTION			

- Almost all soils were too gravelly & hard to sample by
during the into ground. Instead, we loosened soil
wy a clean chisel (cleaned by non-phosphale wash and
de-ionized ruse), and loaded loose soil into cylandars
by hand. We tried to minimize antact between chisely
Samples. We generated = gallons of docon & vinse water,
this was deposited in the process-waste land fill (still is an active land fill by standing water). (Penny Bassett prior to doing any de
- Samples collected by method described above noted wy "scraped"
in notes colonin of sample control. Samples collected
by dowing to be noted of "driven" in notes coloma.
- Some sample sites had topsoil removed by Hocla
prior to our sampling. Those are noted wy "cleaned"
in notes column of sample control.
- We always removed at least 1" of soil prior to sayling.
Other site-specific sampling practices are noted in the
"notes" column of the Sample control log.
Received & Acknowledged by: Signed: Camil Horns KLEINFELDER
Representing:

KLEINFELDER

2749 E. Parley's Way, Suite 100 Salt Lake City, UT 84109 (801) 466-6769

DAILY FIELD REPORT

The following was noted:

5/24/95	JOB NO. 31-693060
PROJECT Hecla Minths	
LOCATION St. George / Ap	ex facility
CONTRACTOR	OWNER
WEATHER RAINY	TEMP. 600 °at 7:00 AM
Down Horns, Mar	k Christensen
	t from G+M
TYPE OF INSPECTION	

7200 - Started samp	ling pre-surveyed totals at Pond 2 (P2-1
	wing pre-surveyed sites at Pond 3
Csiles	P3-4 through P3-13)
	supreyed sites at land (PI-1 through PI-61
	velatively fresh-looking soil pile just
	the stock pile from the building
.هـ	pi-en just north of pile sampled
	6-1 & BG-Z). We collected Z
Samples for	m the SE side of this of
	ck pile (sites SP-1 + SP-2). The
surveying for	these sites is described on change sayle
Con hal log	
- Collected a	"Windblow" sample from SE of pond 1.
	,-1" 15 155' SE of the 0,0 point
at Corna	of Pand I, measured parallel to NE
edge of the	e pand. Sample was collected from the
top 1" of	soil.
Received & Acknowledged by:	Signed:KLEINFELDER
tenresenting:	Date:

DAILY FIELD REPORT

The	following	was	noted
-----	-----------	-----	-------

5/24/15	JOB NO. 31-6	930 60	 >
PROJECT Hecla Mining			
LOCATION Aper Facility		enge	
CONTRACTOR	OWNER		
WEATHER	ТЕМР.	°at °at	AM PM
PRESENT AT SITE			
	·		
TYPE OF INSPECTION			

TYPE OF INSPECTION
- Collected four samples from the surge Pond. The
Samples were collected along a diagonal line from
the SE corner to the NW corner of the pond. Sample
sites 5-1, 5-2, 5-3, and 5-4 were 151, 351, 621,
and 90' from the inside of the SE carner, respectively.
Standing water in the bottom of the pond prevailed us
from getting a more even sample distribetion.
- collected another wouldlow sample from SE of
the surge pond, NE of the main ove storage
area. Site wind blow 2 is 123 feet a from the
contar of the Stedge of the Surge pond, measured
perpendicular to the pole line to the east. This
sample was collected by scraping the top l'of soil
- Collected background samples from west of
the main gate to the plant. Siles BG-5 and BG-6
ave Sw (uphill) from the road leading to the plant, 56
The NW of the NW side of the main gate. Site
BG-5 15 74' West of the road, BG-6 is 117' vest
of the road.
Received & Acknowledged by: Signed:

	·	
Representing:		Date:

KLEINFELDER

DAILY FIELD REPORT

The following was noted:

JOB NO.	13060	,
7		
OWNER		
TEMP.	°at °at	AM PM

	31-6	31-613060 wg OWNER TEMP. °at

the following was noted.	
	TYPE OF INSPECTION
- Collected a back good som	all the way
back at Hwy 91 2 0.7	
planto Site BG-7 145 = 11	
the Highway, = 300 feet NE of	
Herla Apex facility	
- we discharged = 1'2 gallons	of decontrinse water
into the active land fill / pond	_
- We made copies of maps and	,
for Buck &	1
- we left copies of the field	notes for 5/22 4 5/23
with Penny Bassett.	
	·
Received & Acknowledged by: S	signed:
	KLEINFELDER
Representing: D	ate:

PROJ NO	1	NAME 5930 60				//				//	//	//	LAB # 22(03)
L P. NO			NO			/	X	γ,	/ /	/ /	//	/ /	/// 2/13 22(03/
P.O. NO	L	Si (Signature/Number) ICI Howns /2362	OF CON	ANA V.	\$/ *	\ 3 \\		/		//	///	//	1//
DATE	SAMPLE I.D. TIME HH MM SS	SAMPLE I.D.	TAINERS	100			//	/	//			//	/ REMARKS
	8:45	HM052395-01		<u>ک</u> ا	X	1	\mathcal{T}			<u> </u>	1	1	Composition Trion Conference Trip
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9:05	HM052395-02		 	X		- 			_	+ +		confesile w/ 4MOS2395-14 for TPH
	9:30	Hmos2395-03	17		X	+	+			\top	++	\top	T Comments HMAS NESS OSS - OSS
	9:35	HMO52395-04			\dot{x}		†			\dashv	11		T compreile HMOS2395-059-0
	9:50	HM052395-05	1 1	 	<u>۲</u>	_	+			\top		\top	
	10:00	HM052395-06	(+	<u>ک</u>	_	+-		$\dagger \dagger$		11		T Compesite AMOSZ3 95-05 and - CE
	10:15	HM052395-07	1	メ		+	1			十	11		
1.	10:30	HM 05 2395-08	1		X		+	_			111	•	7
1	10:35	HM052395-09	1	-	x		+				11		Temposts Hmos 2395-08,-09, 1-10 for TPH
1	10:50	HMO5 2395-10	(1 . 	<u>بر</u>		+		\Box				
	11:00	HM052395-11	1	1. 1	×	\top				\top	++	+	To be Manager Mary 12
	11:10	HM092395-12		 	7		1						1 Composite AM052395-114-12
	11:20	H MOSZ395-13	(×	×								CETTE SECTION OF THE TOP
	11:30	HM052395-14	1	•	X								composite U/H MOSZS85- 02 to TPH
1	11:40	HM052395 15	1	X									
	11:50	HM 05 2395-16	(X									
	12:00	HM 05 2395-17	(X	X	x							Transosite HMOS 2395-17,-18,-19,
	12:05	HM 05 2395-18			X,								and - 20 for TPH and
	12:10	HM05 23 95 -14	(X	×	×							Transfer radiotion
123/15	12:15	HM 05 2395-20	1	X	X	>							本
Jau	by: (Signature) Howy by: (Signature)	Date/Time Received by: (Signal Date/Time Repelved by: (Signal Date/Time Bate/Time	aturo)	Rem			•		a Hace for tals	hec	l list		Send Results To KLEINFELDER 2681 EAST PARLEY'S WAY SUITE 204 SALT LAKE CITY, UT 84109 (801) 466-6769
and	by: (Signature)	Date/Time Received for Labor (Signature)	ratory by:		_	5	- do	•/	4.	ノレロ	951	w.c	3

PROJ NO	PROJECT N	NAME							/	/ /		77	///
	31-6	93060	NO.		,	/ /	NO S	Ĭ /	' /		//	//	' / /
L P. NO.	SAMPLERS	: (Signature/Number)	OF	,	e/r		/ <u>*</u> }/			/ /	' / /	/ /	// LAR # 2203/
1P.O. NO.1	Dan.	1 Horns /2362	con-	17/4	*/* */	\useta\		/ /	//		//	//	265 REMARKS
DATE MM DD YY	SAMPLE I.D. TIME HH MM SS	SAMPLE I.D.	TAINERS	2				//	/	//	//	///	/ CREMARKS
5/23/99	· · · · · · · · · · · · · · · · · · ·	HM052394-21	1	X	×	•						7	<u> </u>
	12:55	HM052395-22	1	+	X								Composite HMOSE395-21,-22,-23,
	13:00	HM052395- Z3	1	X	Y								~d-24 for TPH.
	13:05	4M052395-24	1	X	×							<u> </u>	-
	13:10	HM052395-25	1	X	X								
	13:15	HM052395-26	1	X									
	13:20	HMO5 2395 - 27	1	X		$\boldsymbol{\varkappa}$			T			(emposite with Amos 2395 - 29 for va diatron
	13:25	HM052395-28	. 1	$ \mathbf{x} $	X								
	13:40	HMOS 2395-29	(X		×						Cr	imposite W AMPS 2395 - 27 for radiation
	14:00	HMOS 2395-30	1	X		×						7	
	14:0T	H0105 2395-31	I	X		×							composite samples HM 052395-30,31.
	14:05	HM052395-32	1	X		×							-32, and -33 for radiation
	14:10	HM 052395-33	1	X		<u> </u>						7	'
	14:15	Field Blank	1	X	X								
. *	14:35	HMO52395-34	1	×									
	14:47	HM 052395-35	1	X									
	14:50	HMD52395.36	1	×		X						1	
	14:55	HWO5 2391-37	1	X	_	X			ŀ				composite Han 05 23 95-36, -37 -35.
}	12/19/19	Hmot 2391-38	1	X	\perp	×							composite Hon 05 23 95-36, +3 7 -38.
5/23/95	2:075:40	HMOS 2395-39	1	X	\perp	<u> </u>				Ŀ		لدا	-
Relinquished	by: (Signature)	Date/Time Received by: (Signature)	ro) 2	Rema	arks		see						Send Results To KLEINFELDER
Relinquished	by: (Signature)	Date/Time Received by: (Signature 5/15 4/50 Came/ F	mas.				hee t c	•					2681 EAST PARLEY'S WAY SUITE 204 SALT LAKE CITY, UT 84109 (801) 466-6769
Relinquished	De (Signature)	Date/Time Received for Laborat (Signature)	ary by:	1	5	- da	7	lur	· W	A)	ou c	1	
		White - Sampler	v —	0	D	eturn Co	T- O				,		Pink - Lah Comr

M-60

White - Sampler

Canary - Return Copy To Shipper

Pink - Lab Copy

PROJ NO	PROJECT N		<u> </u>			7	7 /	7	7	7	7	7	77	////			
		93060	NO.					/ ,	/ ,	/ ,	/ /		//	///	14B # 22631		
L P. NO	I	(Signature/Number)	OF	ني		/ /	//						/ /	/ / /	LAB # 2263/		
- · · · · · · · · · · · · · · · · · · ·	Dav.	el Horne/2362 SAMPLEID	con-	WA Y	/ * /		/ .	/ /	/ /	/ /	/ /	/ /		//	36		
DATE SA	, , , , ,	SAMPLE I.D.	TAINERS	Nº.	*/ */ 	//		/	/,	/	/,	//	//		REMARKS		
23/95 1		HM052395-40	1	X													
	5:40	H MOS 2395-41	1	X													
	5:50	HM052395.42	1	X													
/	16:00	HM 052395.43	١	X													
1	6:30	HN052395-44	1	X													
	16:40	HM052395-45		X													
	16:35	HM052395.46	l	x													
	16:45	HM052395-47	ŧ	X													
	16:55	HM052395-48	. (.	×													
	17:00	HM05 2395-49	(X													
	17:10	HMO5 2395-50		X										<u></u>			
24/95	7:30	HM052495-01		۲							·						
	7:35	HMO5 2415-02	(۲			\perp										
	7:40	HM052415-03	(X								_					
	7:45	HW052495-04	Ţ	×		1_	<u> </u>										
	7:50	HW052495-05	(X		J	_										
	7:55	HM 05 2415-06	ſ	x								\perp	<u> </u>				
	8:00	Hm052495-07	(X		_	_					_	_ _				
	8:15	HM052495-08	(×		1	_										
124/45	8:20	HM052495-09	(X										<u> </u>			
elimouished by	y: (Signature) House	Date/Time Received by: (Signat	(ure)	Rema		*	se	> a	Ha	ch	cL			Send Results To	•		
Relinquished by: (Signature) Date/Time Received by: (Signature) S/25 9:00 Oam Horry					sheet for a list of metals										2681 EAST PARLEY'S WAY SUITE 204 SALT LAKE CITY, UT 84109 (801) 466-6769		
elinquished by	y: (Signature)	Date/Time Received for Labor (Signature)	atory by:	2	day	_	40	rч	av	ve	nd						
io (White - Sampler	- V -	Cana	ry Retu	urn Co	ру То	Shippe	91					Pink - Lat	Сору		

PROJ NO	PROJECT N	AME		Γ		7	7	7	7	7	7	7	77	777	 			
	31-64	13060	NO	.	/			/	/,	/ /	/ /	//		///	LAR	2263/		
L P NO P.O. NO.)	1	(Signature/Number) if	OF CON	4784	\$/ * /\\						/,	//	//		5	2263/		
DATE SA TII M DD YY HE	AMPLE I.D.	SAMPLE I.D.	TAINERS	2/3	\$/* 	//	//					//	//		4,	EMARKS		
24/14	8:30	HM052495-10	ı	X							T				٠.			
}	8:42	HW052495-11	1	7						:								
	8:45	HM 052495-12	1	X														
	8:50	HMOT 2495-13	. 1	×														
	9:00	HM 05 2495.14	. (X														
6	1:05	HMO5 2495-15	1	X				·										
9	9:10	4MOSZ495-16	(X														
9	7:15	AMO52495-17	(x			,											
	1:20	HM052495-18	f	入												:		
1	9:30	HM05 2495-19		X														
	9:35	HMOT 2441-20	(ン														
	9:48	HMOS 2495-21	(X														
1 1	1:50	HMD52495-22	(×														
	9:54	HM052495-23	- 1	X														
1	9:00	HM052495-24	ı	X														
1	0:05	HM052495-25	. (X														
1 1	10:15	HM092495-26	١	X												••		
1	0:20	HM052495-27		<i>y</i>	_		1	$oxed{oxed}$					ļ·					
	0:40	HMOT 2415 -28		X														
11/97 1	1:00	HM052495-29		X			<u> </u>											
land by:	(Signature)	Date/Time Received by: (Signat	ure)	Rem	arks *	see L	at	laci	hed	1	:40	ct		Send Results To				
Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time Oath/Arras				for a list of netals										2681 EAST PARLEY'S WAY SUITE 204 SALT LAKE CITY, UT 84109 (801) 466-6769				
Relinguished by: (Signature) Date/Time Received for Laboratory by: (Signature)						5-day town around												
0	,	White - Sampler	V	Cana	ry - Re	turn Co	ру То	Shipp	er			-		Pink - La	Сору			

PROJECT NAME PROJ NO 46 5 LA2 # 2263/ 31- 693060 SAMPLERS: (Signature/Number) NO. LP. NO P.O. NO.) Daniel Hovus /2362
SAMPLEID CON-TAINERS DATE TIME MM DD YY HH:MM SS 11:05 HM052495-30 11:10 HMD52495-31 11:15 HW052495-32 HW05 2495-33 11:25 HMC5 2495-34 11:30 * HMO5 2495-35 11:50 HM05 2445 - 36 11:55 5/24/95 12:05 HM052495-37 **%** Date/Time Received by: (Signature) Religauished by: (Signature) Send Results To * See attached Sheet for a list of metals 5-day town around KLEINFELDER Recoixed by: (Signature) 2681 EAST PARLEY'S WAY Relinquished by: (Signature) Date/Time **SUITE 204** SALT LAKE CITY, UT 84109 51. 9 9:00 (801) 466-6769 Received for Laboratory by: Relinquished by: (Signature) Pink - Lab Copy Canary - Return Copy To Shipper No

KLEINFELDER

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested:

Total Recoverable Petroleum

Hydrocarbons

Field Sample ID:

31-6930 60 HM052395-01 Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number: EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID:

463 West 3600 South Salt Lake City, Utah 84115

Analytical Results Units = mg/kg(ppm) **Total Recoverable Petroleum Hydrocarbons**

Compound:

Limit:

Amount Detected:

Total Recoverable Petroleum Hydrocarbons

5.0

Detection

360.

(801) 263-8686 Fax (801) 263-8687

> < Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

Report Date: May 30,1995

ORGANIC ANALYSIS REPORT

AMERICAN WEST ANALYTICAL LABORATORIES Client: Kleinfelder Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested: Total Recoverable Petroleum Hydrocarbons

Field Sample ID: 31-6930 60 HM052395-13 Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref.Number: EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID: L22631-13

463 West 3600 South Salt Lake City, Utah 84115 Analytical Results
Units = mg/kg(ppm)

Total Recoverable Petroleum Hydrocarbons

Compound:Detection
Limit:Amount
Detected:Total Recoverable Petroleum Hydrocarbons5.025.

(801) 263-8686 Fax (801) 263-8687

< Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By: John Jan

Report Date: May 30,1995

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested:

Total Recoverable Petroleum

Hydrocarbons

Field Sample ID:

31-6930 60 HM052395-25 Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number: EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID: L22631-25

163 West 3600 South Salt Lake City, Utah 84115 Analytical Results
Units = mg/kg(ppm)

Total Recoverable Petroleum Hydrocarbons

Compound:
Detection Limit: Detected:

Total Recoverable Petroleum Hydrocarbons

5.0

9.0

(801) 263-8686 Fax (801) 263-8687

< Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

Report Date: May 30,1995

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested:

Total Recoverable Petroleum

Hydrocarbons

Field Sample ID:

31-6930 60 HM052395-28 Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number: EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID:

L22631-28

463 West 3600 South Salt Lake City, Utah 84115

Analytical Results Units = mg/kg(ppm)

Total Recoverable Petroleum Hydrocarbons

Compound:

Detection Limit:

Amount Detected:

Total Recoverable Petroleum Hydrocarbons

5.0

54.

(801) 263-8686 Fax (801) 263-8687

> < Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

Report Date: May 30,1995

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested:

Total Recoverable Petroleum

Hydrocarbons

Field Sample ID:

31-6930 60

HM052395-02/HM052395-14 COMP

Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number: EPA 418.1 (Extraction

Lab Sample ID: L22631-88

Infared Absorption)

Compound:

Analytical Results Units = mg/kg(ppm) **Total Recoverable Petroleum Hydrocarbons**

Detection

Amount Detected:

Total Recoverable Petroleum Hydrocarbons

100.

Limit:

580.

(801) 263-8686 Fax (801) 263-8687

463 West 3600 South

Salt Lake City, Utah

84115

< Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

*l*aboratory

Report Date: May 30,1995

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested:

Total Recoverable Petroleum

Hydrocarbons

Field Sample ID:

31-6930 60

HM052395-03/HM052395-04 COMP

Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number:

EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID:

L22631-89

463 West 3600 South Salt Lake City, Utah 84115

Analytical Results Units = mg/kg(ppm)

Total Recoverable Petroleum Hydrocarbons

Compound:

Detection Limit:

Amount Detected:

Total Recoverable Petroleum Hydrocarbons

5.0

< 5.0

(801) 263-8686 Fax (801) 263-8687

> < Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

aboratory Super

Report Date: May 30,1995

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested:

Total Recoverable Petroleum Hydrocarbons

Field Sample ID: 31-6930 60

HM052395-05/HM052395-06 COMP

Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number: EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID:

L22631-90

Analytical Results Units = mg/kg(ppm) Total Recoverable Petroleum Hydrocarbons

84115

Compound:

Detection Limit:

Amount Detected:

Total Recoverable Petroleum Hydrocarbons

10.

110.

(801) 263-8686 Fax (801) 263-8687

163 West 3600 South

Salt Lake City, Utah

< Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

Report Date: May 30,1995

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested: Total Recoverable Petroleum

Hydrocarbons

Compound:

Field Sample ID:

31-6930 60

HM052395-08,09,&10 COMP

Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number:

EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID:

L22631-91

Analytical Results

Units = mg/kg(ppm)

Total Recoverable Petroleum Hydrocarbons

Detection Limit:

Amount Detected:

Total Recoverable Petroleum Hydrocarbons

5.0

20.

(801) 263-8686 Fax (801) 263-8687

163 West 3600 South

Salt Lake City, Utah

84115

< Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

aboratory/Supervisor

Report Date: May 30,1995

AMERICAN WEST **ANALYTICAL LABORATORIES**

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995

Date Received: May 25,1995

Analysis Requested:
Total Recoverable Petroleum

Hydrocarbons

Field Sample ID:

31-6930 60

HM052395-11 & 12 COMP

Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number:

EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID:

L22631-92

Analytical Results

Total Recoverable Petroleum Hydrocarbons

163 West 3600 South Salt Lake City, Utah 84115

Units = mg/kg(ppm)

Compound:

Total Recoverable Petroleum Hydrocarbons

Limit:

Detection

Amount Detected:

5.0

33.

(801) 263-8686 Fax (801) 263-8687

> < Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

Laboratory Super-

Report Date: May 30,1995

AMERICAN WEST ANALYTICAL LABORATORIES

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested:

Total Recoverable Petroleum

Hydrocarbons

Field Sample ID:

31-6930 60

Compound:

HM052395-17,18,19, & 20 COMP

Contact: Daniel Horns

Date Extracted: May 26,1995 Date Analyzed: May 26,1995

Method Ref. Number: EPA 418.1 (Extraction Infared Absorption)

Lab Sample ID:

L22631-93

Analytical Results

Units = mg/kg(ppm)

Total Recoverable Petroleum Hydrocarbons

Detection Limit:

Amount Detected:

Total Recoverable Petroleum Hydrocarbons

5.0

35.

(801) 263-8686 Fax (801) 263-8687

463 West 3600 South

Salt Lake City, Utah

84115

< Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

Report Date: May 30,1995

AMERICAN WEST ANALYTICAL LABORATORIES

ORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23,1995 Date Received: May 25,1995

Analysis Requested:

Total Recoverable Petroleum

Hydrocarbons

Field Sample ID:

31-6930 60

HM052395-21,22,23, & 24 COMP

Contact: Daniel Horns

Date Extracted: May 26,1995

Date Analyzed: May 26,1995

Method Ref. Number: EPA 418.1 (Extraction

Infared Absorption)

Lab Sample ID: L22631-94

463 West 3600 South Salt Lake City, Utah 84115 Analytical Results
Units = mg/kg(ppm)

Total Recoverable Petroleum Hydrocarbons

Compound:

Detection Limit:

Amount Detected:

Total Recoverable Petroleum Hydrocarbons

5.0

15.

(801) 263-8686 Fax (801) 263-8687

< Value = None detected above the specified detection limit, or a value that reflects a reasonable limit due to interferences.

Released By:

aboratory Superdisor

Report Date: May 30,1995

OUALITY CONTROL REPORT

Client: Kleinfelder

Lab Sample ID.: 22631 Set Description: Ninety Solid Samples

Contact: Daniel Horns

Received By: Elona Hayward

Quality Control Results

Units = (nnm)

Omts – (ppi		Original	Spike	Spike	Spike Dup	% Spike	% Spike Dup % Duj	% Duplicate	Ouplicate
Sample #	Compound	Concentration (SR)	Added (SA)	Result (SSR)	Result (SDR)	Recovery (%SR)	Recovery (%SDR)	Difference (RPD)	_
22631-94	Oil & Grease	4.9	1,150.	1,152.	1,140.	99.7	98.7	1.0	

 $%SR = \frac{(SSR - SR)}{SA} * 100$

 $\%SDR = \frac{(SDR - SR)}{SA} * 100$

Released by:

Report Date 6/1/95

AMERICA Client: Kleinfelder

WESDate Sampled: May 23, 1995
ANALYTICALab Sample ID.: 22631-01
LABORATORIESield Sample ID.: HM052395-01/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	92
	Barium	6010	0.5	66
1	Cadmium	6010	0.2	7.2
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	9.1
	Cobalt	6010	0.5	260
	Copper	6010	0.5	260
	Lead	6010	3.0	170
1	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	28
	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	0.7
	Zinc	6010	0.5	250

Released by:	Kret	
	Laboratory Supervisor	

AMERICAN
WEST Client: Kleinfelder
WEST Client: Kleinfelder
ANALYTICA Date Sampled: May 23, 1995
LABORATORIE LABORA

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

73.	narytical Acousts					
163 West 3600 Sout	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg		
Salt Lake City, Utah 84115	Arsenic	7060	0.5	230		
i	Barium	6010	0.5	150		
	Cadmium	6010	0.2	14		
(801) 263-8686	Chromium	6010	0.5	11		
Fax (801) 263-8687	Cobalt	6010	0.5	120		
	Copper	6010	0.5	570		
	Lead	6010	3.0	240		
l	Mercury	7471	0.1	<0.1		
	Nickel	6010	0.5	55		
	Selenium	7740	0.1	<0.1		
•	Silver	6010	0.5	15		
	Zinc	6010	0.5	530		

Released by:	Put
	Laboratory Supervisor

AMERICAN WEST Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL Lab Sample ID.: 22631-03
LABORATORIE Field Sample ID.: HM052395-03/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

	naiyticai Acourts			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2.6
	Barium	6010	0.5	76
	Cadmium	6010	0.2	0.2
(801) 263-8686	Chromium	6010	0.5	7.8
Fax (801) 263-8687	Cobalt	6010	0.5	4.4
	Copper	6010	0.5	7.1
	Lead	6010	3.0	7.2
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	7.1
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.5
:	Zinc	6010	0.5	18

Released by:	Patt	
•	Laboratory Supervisor	

AMERICAN WEST Date Sampled: May 23, 1995
ANALYTICAL Lab Sample ID.: 22631-04
LABORATORIE Field Sample ID.: HM052395-04/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2.7
;	Barium	6010	0.5	86
;	Cadmium	6010	0.2	0.3
(801) 263-8686	Chromium	6010	0.5	8.4
Fax (801) 263-8687	Cobalt	6010	. 0.5	5.7
	Copper	6010	0.5	7.5
	Lead	6010	3.0	8.2
l	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	7.6
• :	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.7
·	Zinc	6010	0.5	19

Released by:	Kett			
·	Laboratory Supervisor			

AMERICAN Lient: Kleinfelder

WEST ANALYTICAD ate Sampled: May 23, 1995
ANALYTICAD ate Sample ID.: 22631-05
LABORATORIE Field Sample ID.: HM052395-05/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

Analytical Results

	italy tical accounts			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	190
	Barium	6010	0.5	140
	Cadmium	6010	0.2	42
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	6.6
	Cobalt	6010	0.5	80
	Copper	6010	0.5	600
:	Lead	6010	3.0	380
•	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	32
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	3.1
	Zinc	6010	0.5	590

Released	by:

AMERICAN Lient: Kleinfelder WEST Late Sampled: May

ANALYTICAL Sampled: May 23, 1995

ANALYTICAL Sample ID.: 22631-06

LABORATORIE Sample ID.: HM052395-06/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	100
	Barium	6010	0.5	210
	Cadmium	6010	0.2	9.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	11
	Cobalt	6010	0.5	59
	Copper	6010	0.5	340
	Lead	6010	3.0	280
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	22
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	2.7
	Zinc	6010	0.5	660

Released	by:	

AMERICAN
WEST lient: Kleinfelder
WEST lient: Kleinfelder
ANALYTICA Date Sampled: May 23, 1995
ANALYTICA Lab Sample ID.: 22631-07
LABORATORIE LABORATOR

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

4.84	adiy eletti accounts			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2.2
	Barium	6010	0.5	63
	Cadmium	6010	0.2	0.2
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	8.6
	Cobalt	6010	0.5	4.2
	Copper	6010	0.5	16
	Lead	6010	3.0	5
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	7.1
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.1
	Zinc	6010	0.5	22

Release	d by:

AMERICAN WEST lient: Kleinfelder WEST lient: Kleinfelder ANALYTICAD ate Sampled: May 23, 1995
ANALYTICAD Lab Sample ID.: 22631-08
LABORATORIE Field Sample ID.: HM052395-08/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

463 West 3600 SouifiC	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	410
	Barium	6010	0.5	85
	Cadmium	6010	0.2	6
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	9.6
	Cobalt	6010	0.5	46
	Copper	6010	0.5	630
	Lead	6010	3.0	480
	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	18
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	3.3
	Zinc	6010	0.5	430

Released by:	Kett
·	Laboratory Supervisor

AMERICAN Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL Lab Sample ID.: 22631-09
LABORATORIE Field Sample ID.: HM052395-09/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	Halytical Results			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	40
	Barium	6010	0.5	150
	Cadmium	6010	0.2	1.1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	8.7
	Cobalt	6010	0.5	14
	Copper	6010	0.5	70
	Lead	6010	3.0	81
!	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	11
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.7
:	Zinc	6010	0.5	76

Rel	eas	ed	hv:

AMERICAN Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-10
LABORATORIE Field Sample ID.: HM052395-10/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

2 %	mary tical accounts			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	21
	Barium	6010	0.5	78
	Cadmium	6010	0.2	1.1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.3
	Cobalt	6010	0.5	5.4
	Copper	6010	0.5	53
	Lead	6010	3.0	50
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	7.4
	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	49

Released by:	PZ	It
•	Laborator	v Superviso

AMERICAN lient: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-11
LABORATORIE Field Sample ID.: HM052395-11/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	italy tical recoults			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	200
	Barium	6010	0.5	73
	Cadmium	6010	0.2	75
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	8.2
	Cobalt	6010	0.5	72
	Copper	6010	0.5	430
	Lead	6010	3.0	410
1	Mercury	7471	0.1	<0.1
r	Nickel	6010	0.5	21
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	5.1
	Zinc	6010	0.5	680

Released by:

AMERICAN Client: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-12
LABORATORIE Field Sample ID.: HM052395-12/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

463 West 3600 Sout#**	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	240
	Barium	6010	0.5	90
b 	Cadmium	6010	0.2	8.8
(801) 263-8686	Chromium	6010	0.5	12
Fax (801) 263-8687	Cobalt	6010	0.5	57
	Copper	6010	0.5	450
	Lead	6010	3.0	400
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	21
·	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	3.3
))	Zinc	6010	0.5	580

Released by:	Ket	
	Laboratory Supervisor	

AMERICAN Lient: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-13
LABORATORIE Field Sample ID.: HM052395-13/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

_ <u>A</u>	Harytical Acsults			
463 West 3600 SoutHOTAL METALS		Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	510
	Barium	6010	0.5	120
	Cadmium	6010	0.2	7.7
(801) 263-8686	Chromium	6010	0.5	10
Fax (801) 263-8687	Cobalt	6010	0.5	20
	Copper	6010	0.5	4300
	Lead	6010	3.0	980
	Mercury	7471	0.1	0.1
	Nickel	6010	0.5	22
	Selenium	7740	0.1	2
	Silver	6010	0.5	4.5
	Zinc	6010	0.5	1000

Released by:	Part
	Laboratory Supervisor

AMERICAN Client: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-14
LABORATORIE Field Sample ID.: HM052395-14/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	nalytical Acsults	Wathad	Detection	A
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	1200
	Barium	6010	0.5	310
	Cadmium	6010	0.2	35 .
(801) 263-8686	Chromium	6010	0.5	16
Fax (801) 263-8687	Cobalt	6010	0.5	280
	Copper	6010	0.5	4400
	Lead	6010	3.0	2500
!	Mercury	7471	0.1	0.4
•	Nickel	6010	0.5	110
	Selenium	7740	0.1	1.5
	Silver	6010	0.5	9.5
	Zinc	6010	0.5	4900

Rel	case	:d b	y:

AMERICAN Client: Kleinfelder

WEST Date Sampled: May 23, 1995
ANALYTICAL Lab Sample ID.: 22631-15
LABORATORIES Field Sample ID.: HM052395-15/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

	ilary titur results			
163 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	930
	Barium	6010	0.5	250
	Cadmium	6010	0.2	30
(801) 263-8686	Chromium	6010	0.5	15
Fax (801) 263-8687	Cobalt	6010	0.5	250
	Copper	6010	0.5	2700
	Lead	6010	3.0	2300
!	Mercury	7471	0.1	0.4
:	Nickel	6010	0.5	88
	Selenium	7740	0.1	2
	Silver	6010	0.5	10
	Zinc	6010	0.5	4400

Released by:	Pult	
	Laboratory Supervisor	

AMERICAN lient: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-16
LABORATORIE Field Sample ID.: HM052395-16/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

163 West 3600 SoutiFG	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah		70.00		
84115	Arsenic	7060	0.5	2.6
	Barium	6010	0.5	79
,	Cadmium	6010	0.2	0.3
(801) 263-8686	Chromium	6010	0.5	7.3
Fax (801) 263-8687	Cobalt	6010	0.5	4.1
	Copper	6010	0.5	11
	Lead	6010	3.0	9.1
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	6.6
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.6
	Zinc	6010	0.5	.18

AMERICAN Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-17
LABORATORIE Field Sample ID.: HM052395-17/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 SoutiFG	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	8.8
	Barium	6010	0.5	35
	Cadmium	6010	0.2	1.5
(801) 263-8686	Chromium	6010	0.5	6.7
Fax (801) 263-8687	Cobalt	6010	0.5	40
	Copper	6010	0.5	7.9
	Lead	6010	3.0	23
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	10
•	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.7
:	Zinc	6010	0.5	15

Released by:

AMERICANClient: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-18
LABORATORIE Field Sample ID.: HM052395-18/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

	ilary tical Accounts	Method	Detection	Amount
463 West 3600 SoutTOTAL METALS		<u>Used:</u>	Limit: mg/kg	Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	10
	Barium	6010	0.5	29
•	Cadmium	6010	0.2	1.4
(801) 263-8686	Chromium	6010	0.5	5.9
Fax (801) 263-8687	Cobalt	6010	0.5	91
	Copper	6010	0.5	23
	Lead	6010	3.0	26
· 	Mercury	7471	0.1	<0.1
;	Nickel	6010	0.5	9
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	26

-	
Released	by:

AMERICAN Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-19
LABORATORIE Field Sample ID.: HM052395-19/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	naiyucai Kesuns			
463 West 3600 SoutHOTAL METALS		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	3600
	Barium	6010	0.5	270
	Cadmium	6010	0.2	46
(801) 263-8686	Chromium	6010	0.5	41
Fax (801) 263-8687	Cobalt	6010	0.5	1500
	Copper	6010	0.5	8700
	Lead	6010	3.0	8900
ļ	Mercury	7471	0.1	1.6
	Nickel	6010	0.5	150
	Selenium	7740	0.1	3.2
i	Silver	6010	0.5	33
	Zinc	6010	0.5	9100

Released by:

AMERICANClient: Kleinfelder
WESTDate Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-20
LABORATORIE Field Sample ID.: HM052395-20/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

_ <u>.a.</u>	naiyucai Kesuits			
463 West 3600 SoutiFG	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	5000
•	Barium	6010	0.5	620
•	Cadmium	6010	0.2	640
(801) 263-8686	Chromium	6010	0.5	21
Fax (801) 263-8687	Cobalt	6010	0.5	420
1	Copper	6010	0.5	28000
	Lead	6010	3.0	13000
	Mercury	7471	0.1	2.3
	Nickel	6010	0.5	260
1	Selenium	7740	0.1	5.3
	Silver	6010	0.5	36
	Zinc	6010	0.5	16000

Released	bv:

AMERICA Client: Kleinfelder
WESDate Sampled: May 23, 1995
ANALYTICA Lab Sample ID.: 22631-21
LABORATORIE Field Sample ID.: HM052395-21/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	71
	Barium	6010	0.5	91
	Cadmium	6010	0.2	3.6
(801) 263-8686	Chromium	6010	0.5	11 %
Fax (801) 263-8687	Cobalt	6010	0.5	300
	Copper	6010	0.5	91
	Lead	6010	3.0	160
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	17
1	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.8
l	Zinc	6010	0.5	120

Released by:	
--------------	--

AMERICAN Lient: Kleinfelder

WESTDate Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-22
LABORATORIE Field Sample ID.: HM052395-22/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	7000
	Barium	6010	0.5	300
	Cadmium	6010	0.2	110
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	30
	Cobalt	6010	0.5	690
	Copper	6010	0.5	12000
	Lead	6010	3.0	20000
	Mercury	7471	0.1	0.6
	Nickel	6010	0.5	220
	Selenium	7740	0.1	6.4
	Silver	6010	0.5	40
	Zinc	6010	0.5	11000

Released by:

AMERICAN Lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-23
LABORATORIE Field Sample ID.: HM052395-23/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

	italy tital attour			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	80
	Barium	6010	0.5	89
	Cadmium	6010	0.2	4
(801) 263-8686	Chromium	6010	0.5	11
Fax (801) 263-8687	Cobalt	6010	0.5	100
	Copper	6010	0.5	87
	Lead	6010	3.0	110
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	20
	Selenium	7740	0.1	<0.1
I	Silver	6010	0.5	1.2
	Zinc	6010	0.5	97

Released by:

AMERICANClient: Kleinfelder
WESTDate Sampled: May 23, 1995
ANALYTICAL Sample ID.: 22631-24
LABORATORIE Field Sample ID.: HM052395-24/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u></u>	OTAL METALS	Method Used:	Detection Limit:	Amount Detected:
463 West 3600 South	OTAL METALS		mg/kg	mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2700
	Barium	6010	0.5	230
	Cadmium	6010	0.2	43
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	15
	Cobalt	6010	0.5	180
	Copper	6010	0.5	8600
	Lead	6010	3.0	9900
	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	100
	Selenium	7740	0.1	2.8
	Silver	6010	0.5	25
	Zinc	6010	0.5	8900

Released by: Laboratory Supervisor

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-25
LABORATORIE Field Sample ID.: HM052395-25/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	36
	Barium	6010	0.5	66
	Cadmium	6010	0.2	1.3
(801) 263-8686	Chromium	6010	0.5	9.8
Fax (801) 263-8687	Cobalt	6010	0.5	100
	Copper	6010	0.5	74
	Lead	6010	3.0	89
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	16
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.7
	Zinc	6010	0.5	.82

Released	by:	_	/	!
			- 8-	

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL Sample ID.: 22631-26
LABORATORIE Field Sample ID.: HM052395-26/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u> </u>	nalytical Results			
463 West 3600 Souti ^T	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	10
	Barium	6010	0.5	68
	Cadmium	6010	0.2	0.6
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	10
	Cobalt	6010	0.5	85
	Copper	6010	0.5	40
	Lead	6010	3.0	33
1	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	13
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1
	Zinc	6010	0.5	63

Released by:

Laboratory Supervisor

Report Date 6/1/95

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-27

LABORATORIE Field Sample ID.: HM052395-27/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u> </u>	narytical Acourts			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	180
	Barium	6010	0.5	94
	Cadmium	6010	0.2	17
(801) 263-8686	Chromium	6010	0.5	17
Fax (801) 263-8687	Cobalt	6010	0.5	290
•	Copper	6010	0.5	150
: ;	Lead	6010	3.0	250
1	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	36
	Selenium	7740	0,1	<0.1
:	Silver	6010	0.5	1.8
	Zinc	6010	0.5	200

Released by:

AMERICAlClient: Kleinfelder

WESDate Sampled: May 23, 1995

ANALYTICALab Sample ID.: 22631-28

LABORATORIEField Sample ID.: HM052395-28/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

A 3.	naiyucai Nesuns			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	58
	Barium	6010	0.5	22
	Cadmium	6010	0.2	1.6
(801) 263-8686	Chromium	6010	0.5	9.3
Fax (801) 263-8687	Cobalt	6010	0.5	87
	Copper	6010	0.5	160
	Lead	6010	3.0	47
,	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	14
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	0.8
	Zinc	6010	0.5	160

Released	by:	_	l

AMERICANClient: Kleinfelder WESTDate Sampled: May 23, 1995 ANALYTICALLab Sample ID.: 22631-29

LABORATORIESField Sample ID.: HM052395-29/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

<u></u>	mary tical acesures			· · · · · · · · · · · · · · · · · · ·
T 163 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	200
	Barium	6010	0.5	110
	Cadmium	6010	0.2	19
(001) 062 0606	Chromium	6010	0.5	21
(801) 263-8686 Fax (801) 263-8687	Cobalt	6010	0.5	900
	Copper	6010	0.5	430
	Lead	6010	3.0	370
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	79
	Selenium	7740	0.1	0.2 ·
	Silver	6010	0.5	4.7
	Zinc	6010	0.5	410

Released by:	Put	
•	Laboratory Supervisor	

WESElient: Kleinfelder

ANALYTICA Date Sampled: May 23, 1995
LABORATORIES ab Sample ID.: 22631-30
Field Sample ID.: HM052395-30/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

Analytical Results

463 West 3600 Sout[[OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	110
	Barium	6010	0.5	44
	Cadmium	6010	0.2	7.8
(801) 263-8686	Chromium	6010	0.5	25
Fax (801) 263-8687	Cobalt	6010	0.5	1100
	Copper	6010	0.5	160
	Lead	6010	3.0	170
	Mercury	7471	0.1	<0.1
·	Nickel	6010	0.5	110
	Selenium	7740	0.1	0.3
	Silver	6010	0.5	3.9
	Zinc	6010	0.5	300

Released	bv:	
	Uj.	

AMERICAN WES Client: Kleinfelder

ANALYTICA Date Sampled: May 23, 1995 LABORATORIE LABOR

Field Sample ID.: HM052395-31/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg	
84115	Arsenic	7060	0.5	1400	
	Barium	6010	0.5	210	
	Cadmium	6010	0.2	15	
(801) 263-8686	Chromium	6010	0.5	13	<i>3</i>
Fax (801) 263-8687	Cobalt	6010	0.5	190	1
	Copper	6010	0.5	2200	
	Lead	6010	3.0	2500	
2	Mercury	7471	0.1	<0.1	
	Nickel	6010	0.5	69	
	Selenium	7740	0.1	1.9	
	Silver	6010	0.5	8.8	
	Zinc	6010	0.5	2000	

Released by:	Pett	
•	Laboratory Supervisor	

AMERICAN WES Client: Kleinfelder

ANALYTICAL Date Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-32
Field Sample ID.: HM052395-32/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

A	nalytical Results			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	3500
•	Barium	6010	0.5	550
,	Cadmium	6010	0.2	80
(801) 263-8686	Chromium	6010	0.5	21
Fax (801) 263-8687	Cobalt	6010	0.5	220
	Copper	6010	0.5	9700
	Lead	6010	3.0	10000
1	Mercury	7471	0.1	0.2
	Nickel	6010	0.5	170
	Selenium	7740	0.1	1.5
	Silver	6010	0.5	28
	Zinc	6010	0.5	16000

Released by:	Part	
•	Laboratory Supervisor	

AMERICAN WES Client: Kleinfelder

ANALYTICA Date Sampled: May 23, 1995
LABORATORIES ab Sample ID.: 22631-33
Field Sample ID.: HM052395-33/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

Detected: mg/kg 2500
2500
390
47
15
210
8200
6400
0.2
110
7
21
7200

Released by:

Laboratory Supervisor

1 of 1

AMERICAN WESCHIERT: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIESab Sample ID.: 22631-34

Field Sample ID.: HM052395-34/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	naiyucai Kesuits			
463 West 3600 South Salt Lake City, Utah	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	3.2
	Barium	6010	0.5	32
	Cadmium	6010	0.2	1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	7.5
	Cobalt	6010	0.5	3.5
	Copper	6010	0.5	5
	Lead	6010	3.0	12
	Mercury	7471	0,1	<0.1
	Nickel	6010	0.5	7.1
	Selenium	7740	0.1	0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	-11

Released	by:	_

AMERICAN

WESClient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIELab Sample ID.: 22631-35
Field Sample ID.: HM052395-35/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u> </u>	nalytical Acous	Mathad	Detection	Amount
463 West 3600 SouthOTAL METALS Salt Lake City, Utah		Method <u>Used:</u>	Limit: mg/kg	Detected: mg/kg
84115	Arsenic	7060	0.5	2.5
	Barium	6010	0.5	30
	Cadmium	6010	0.2	1.1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	6.4
	Cobalt	6010	0.5	3.2
	Copper	6010	0.5	3.4
	Lead	6010	3.0	9.6
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	7.1
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	· 9

Rel	eased	by:

AMERICAN

wes Client: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-36
Field Sample ID.: HM052395-36/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	naiyucai Resuns			
463 West 3600 SouthOTAL METALS Salt Lake City, Utah		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	3.2
	Barium	6010	0.5	33
•	Cadmium	6010	0.2	1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	6.9
	Cobalţ	6010	0.5	3.3
	Copper	6010	0.5	4.6
1	Lead	6010	3.0	9.4
	Mercury	7471	0.1	<0.1
!	Nickel	6010	0.5	7.3
	Selenium	7740	0.1	<.01
r	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	12

Releas	ed by:	

AMERICAN
WESClient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIESab Sample ID.: 22631-37
Field Sample ID.: HM052395-37/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

<u> A</u>	nalytical Acousts			
463 West 3600 SouthOTAL METALS Salt Lake City, Utah		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	61
	Barium	6010	0.5	140
	Cadmium	6010	0.2	1.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	. 0.5	16
	Cobalt	6010	0.5	12
	Copper	6010	0.5	130
	Lead	6010	3.0	120
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	18
<u>.</u>	Selenium	7740	0.1	0.2
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	270

Released by:	Kit	
•	Laboratory Supervisor	

AMERICAN

WES Elient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-38
Field Sample ID.: HM052395-38/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

<u>.A.</u>	nalytical Acsults			
463 West 3600 South OTAL METALS		Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	24
	Barium	6010	0.5	100
	Cadmium	6010	0.2	0.2
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	13
	Cobalt	6010	0.5	8
	Copper	6010	0.5	47
	Lead	6010	3.0	62
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	12
	Selenium	7740	0.1	0.1
•	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	60

Released by:	Ket
•	aboratory Supervisor

AMERICAN

wes Client: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIE Lab Sample ID.: 22631-39

Field Sample ID.: HM052395-39/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	28
	Barium	6010	0.5	110
ļ <u>, </u>	Cadmium	6010	0.2	0.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	13
	Cobalt	6010	0.5	7.7
,	Copper	6010	0.5	58
	Lead	6010	3.0	48.
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	12
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0,5
	Zinc	6010	0.5	100

Released by:

AMERICAN

WESTClient: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995
LABORATORIE Labor

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u> </u>	Harytical Results					
463 West 3600 Southro	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg		
84115	Arsenic	7060	0.5	0.6		
	Barium	6010	0.5	140		
	Cadmium	6010	0.2	0.3		
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	14		
	Cobalt	6010	0.5	7.1		
	Copper	6010	0.5	15		
	Lead	6010	3.0	7.1		
;	Mercury	7471	0.1	<0.1		
	Nickel	6010	0.5	13		
	Selenium	7740	0.1	<0.1		
	Silver	6010	0.5	<0.5		
	Zinc	6010	0.5	40		

AMERICAN

WES Client: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995
LABORATORIE LABOR

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 Southro	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	<0.5
	Barium	6010	0.5	150
	Cadmium	6010	0.2	0.4
(801) 263-8686	Chromium	6010	0.5	16
Fax (801) 263-8687	Cobalt	6010	0.5	8
	Copper	6010	0.5	26
	Lead	6010	3.0	20
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	14
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	54

AMERICAN

WESElient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIE ab Sample ID.: 22631-42

Field Sample ID.: HM052395-42/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South C	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	1.1
	Barium	6010	0.5	120
	Cadmium	6010	0.2	0.3
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	14
	Cobalt	6010	0.5	6.8
	Copper	6010	0.5	14
	Lead	6010	3.0	4.6
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	12
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	39

Rel	eased	bv:

Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICAN

WES Client: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIE ab Sample ID.: 22631-43

Field Sample ID.: HM052395-43/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	nary treat Accounts	Method	Detection	Amount
463 West 3600 South	OTAL METALS	<u>Used:</u>	Limit: mg/kg	Detected: mg/kg
84115	Arsenic	7060	0.5	2.5
	Barium	6010	0.5	66
· •	Cadmium	6010	0.2	0.3
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	6
	Cobalt	6010	0.5	3.7
	Copper	6010	0.5	16
	Lead	6010	3.0	5.3
Ą	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	5.4
	Selenium	7740	0.1	<0.1
<u> </u>	Silver	6010	0.5	0.9
	Zinc	6010	0.5	13

Released by:

AMERICAN

west Client: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995 LABORATORIE LABOR

Field Sample ID.: HM052395-44/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	maijucai accounts				
463 West 3600 South Salt Lake City, Utah		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg	
84115	Arsenic	7060	0.5	8	
	Barium .	6010	0.5	89	
	Cadmium	6010	0.2	0.8	
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	13	
	Cobalt	6010	0.5	22	
	Copper	6010	0.5	11	
	Lead	6010	3.0	6.1	
	Mercury	7471	0.1	<0.1	
	Nickel	6010	0.5	23	
	Selenium	7740	0.1	<0.1	
	Silver	6010	0.5	<0.5	
	Zinc	6010	0.5	910	

Released	by:	
	-,-	

AMERICAN WESClient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIES ab Sample ID.: 22631-45

Field Sample ID.: HM052395-45/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

7 X:	naiyiican Accounts	• •			
463 West 3600 South(Salt Lake City, Utah	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount Detected: mg/kg	
84115	Arsenic	7060	0.5	140	
	Barium	6010	0.5	33	
	Cadmium	6010 ·	0.2	10	
(801) 263-8686	Chromium	6010	0.5	190	
Fax (801) 263-8687	Cobalt	6010	0.5	69	
	Copper	6010	0.5	40	
	Lead	6010	3.0	9.5	
	Mercury	7471	0.1	<0.1	
	Nickel	6010	0.5	86	
	Selenium	7740	0.1	<0.1	
	Silver	6010	0.5	0.5	
	Zinc	6010	0.5	6400	

Rel	eased	hv:

Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICAN

WESClient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIES ab Sample ID.: 22631-46
Field Sample ID.: HM052395-46/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	naiyudai Kesuns		• •	
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	65
	Barium	6010	0.5	23
	Cadmium	6010	0.2	7.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	160
	Cobalt	6010	0.5	53
	Copper	6010	0.5	26
·	Lead	6010	3.0	9.1
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	64
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	4200

AMERICAN

WESTClient: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-47
Field Sample ID.: HM052395-47/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	naiyucai Kesuns		·	
463 West 3600 Southro	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	3.2
	Barium	6010	0.5	81
	Cadmium	6010	0.2	2.3
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	8.3
	Cobalt	6010	0.5	58
	Copper	6010	0.5	18
	Lead	6010	3.0	9.9
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	49
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
•	Zinc	6010	0.5	4400

Released by:

WES Client: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-48
Field Sample ID.: HM052395-48/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Λ	naiyucai ixcsuits	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
463 West 3600 SouthOTAL METALS		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	62
	Barium	6010	0.5	110
;	Cadmium	6010	0.2	2.3
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	31
	Cobalt	6010	0.5	53
	Copper	6010	0.5	25
	Lead	6010	3.0	9.3
	Mercury	7471	0.1	<0.1
•	Nickel	6010	0.5	48
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	1900

Released by:	MIT		
•	Laboratory Supervisor		

AMERICAN WEST Client: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-49
Field Sample ID.: HM052395-49/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	nalytical Results			
163 West 3600 South OTAL METALS Salt Lake City, Utah		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	2
	Barium	6010	0.5	110
l	Cadmium	6010	0.2	0.4
(801) 263-8686	Chromium	6010	0.5	12
Fax (801) 263-8687	Cobalt	6010	0.5	6.5
	Copper	6010	0.5	12
	Lead	6010	3.0	6.6
	Mercury	7471	0.1	<0.1
.	Nickel	6010	0.5	11
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	31

AMERICAN

WES Client: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIE & ab Sample ID.: 22631-50

Field Sample ID.: HM052395-50/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: . mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2.4
	Barium	6010	0.5	100
i e	Cadmium	6010	0.2	0.5
(801) 263-8686	Chromium	6010	0.5	11
Fax (801) 263-8687	Cobalt	6010	0.5	6
	Copper	6010	0.5	10
	Lead	6010	3.0	6.9
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	10
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
•	Zinc	6010	0.5	25

Released by:	Kent	
•	Laboratory Supervisor	_

AMERICAN
WES Client: Kleinfelder
ANALYTICAD ate Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-51
Field Sample ID.: HM052495-01/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	5
	Barium	6010	0.5	93
	Cadmium	6010	0.2	0.3
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	11
	Cobalt	6010	0.5	7.5
	Copper	6010	0.5	14
	Lead	6010	3.0	17 .
1	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	11
	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	42

Rel	eased	bv:	

AMERICAN Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL Lab Sample ID.: 22631-52
LABORATORIE Field Sample ID.: HM052495-02/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	1.6
	Barium	6010	0.5	180
	Cadmium	6010	0.2	0.3
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	8.8
	Cobalt	6010	0.5	5.3
	Copper	6010	0.5	16
	Lead	6010	3.0	3.4
<i>.</i> !	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	8.9
·	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
•	Zinc	6010	0.5	23

Released by:	Ket	
•	Laboratory Supervisor	

AMERICAN
WES Client: Kleinfelder
ANALYTICAL Date Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-53
Field Sample ID.: HM052495-03/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

	indig credit recourses	No.41 - 3	Defection	
463 West 3600 SoutTOTAL METALS Salt Lake City, Utah		Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	3.1
	Barium	6010	0.5	85
<u> </u>	Cadmium	6010	0.2	1
(801) 263-8686	Chromium	6010	0.5	5.8
Fax (801) 263-8687	Cobalt	6010	0.5	3.7
	Copper	6010	0.5	15
	Lead	6010	3.0	9.7
	Mercury	7471	0.1	<0.1
1 1	Nickel	6010	0.5	7.6
·	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	9

Released by:	Ital	
•	Laboratory Supervisor	

AMERICANClient: Kleinfelder

WESTDate Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-54

LABORATORIE Field Sample ID.: HM052495-04/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	15
	Barium	6010	0.5	67
•	Cadmium	6010	0.2	<0.2
(801) 263-8686	Chromium	6010	0.5	7.2
Fax (801) 263-8687	Cobalt	6010	0.5	4.7
	Copper	6010	0.5	48
	Lead	6010	3.0	34
· •	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	6.9
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	. 26

Released by:

AMERICAN
WEST Client: Kleinfelder
WEST Client: Kleinfelder
ANALYTICAL Date Sampled: May 23, 1995
ADORATORIES Sample ID.: 22631-55
ADORATORIES SAMPLE ID.: HM052495

Field Sample ID.: HM052495-05/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 Soutff(OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	3.2
	Barium	6010	0.5	63
	Cadmium	6010	0.2	<0.2
(801) 263-8686	Chromium	6010	0.5	6.1
Fax (801) 263-8687	Cobalt	6010	0.5	3.1
	Copper	6010	0.5	41
	Lead	6010	3.0	<3.0
	Mercury	7471	. 0.1	<0.1
	Nickel	6010	0.5	4.9
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	16

Released by:

AMERICAN Lient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-56
LABORATORIE Field Sample ID.: HM052495-06/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	5
	Barium	6010	0.5	160
	Cadmium	6010	0.2	<0.2
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	8.2
	Cobalt	6010	0.5	8
	Copper	6010	0.5	22
	Lead	6010	3.0	19
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	8.9
•	Selenium	7740	0.1	<0.1
). •	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	- 22

Released by:

Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICANClient: Kleinfelder

WESTDate Sampled: May 23, 1995
ANALYTICAILab Sample ID.: 22631-57
LABORATORIE Field Sample ID.: HM052495-07/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

Δ	narytical results	Method	Detection	Amount
463 West 3600 South	OTAL METALS	<u>Used:</u>	Limit: mg/kg	Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	0.8
	Barium	6010	0.5	260
	Cadmium	6010	0.2	<0.2
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	3.7
	Cobalt	6010	0.5	1.5
	Copper	6010	0.5	18
	Lead	6010	3.0	<3.0
1	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	2.6
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	6.9

Released by: Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICAN lient: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-58
LABORATORIE Field Sample ID.: HM052495-08/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 Sout	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	4.8
	Barium	6010	0.5	99
1	Cadmium	6010	0.2	2.1
(801) 263-8686	Chromium	6010	0.5	13
Fax (801) 263-8687	Cobalt	6010	0.5	20
	Copper	6010	0.5	. 10
,	Lead	6010	3.0	6.2
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	23
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	640

Released by:

AMERICAN lient: Kleinfelder
WESDate Sampled: May 23, 1995
ANALYTICA Lab Sample ID.: 22631-59
LABORATORIE Field Sample ID.: HM052495-09/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Analytical Results

	italy cical accounts			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	8.4
	Barium	6010	0.5	93
	Cadmium	6010	0.2	0.8
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	14
	Cobalt	6010	0.5	21
	Copper	6010	0.5	9.3
	Lead	6010	3.0	5.5
ļ	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	25
	Selenium	7740	0.1	<0.1
1	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	570

Released by:

AMERICANClient: Kleinfelder

WESTDate Sampled: May 23, 1995

ANALYTICAILab Sample ID.: 22631-60 LABORATORIESField Sample ID.: HM052495-10/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2500
J	Barium	6010	0.5	60
	Cadmium	6010	0.2	14
(801) 263-8686	Chromium	6010	0.5	380
Fax (801) 263-8687	Cobalt	6010	0.5	37
	Copper	6010	0.5	87
	Lead	6010	3.0	20
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	54
	Selenium	7740	0.1	0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	2500

Released by:

AMERICAN

WESTclient: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995
ABORATORIE & Sample ID: 22631-61

LABORATORIE Lab Sample ID.: 22631-61
Field Sample ID.: HM052495-11/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u> </u>	narytical Acsults			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	79
	Barium	6010	0.5	67
	Cadmium	6010	0.2	2.1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	24
	Cobalt	6010	0.5	36
	Copper	6010	0.5	9.5
	Lead	6010	3.0	8
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	37
	Selenium	7740	0.1	<0.1
- •	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	1300

Released by:

AMERICAN lient: Kleinfelder

WESDate Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-62
LABORATORIE Field Sample ID.: HM052495-12/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	narytical Results	Method <u>Used:</u>	Detection Limit:	Amount Detected:
463 West 3600 SoutTOTAL METALS		USEU.	mg/kg	mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	49
	Barium	6010	0.5	67
	Cadmium	6010	0.2	2.3
(801) 263-8686	Chromium	6010	0.5	19
Fax (801) 263-8687	Cobalt	6010	0.5	67
	Copper	6010	0.5	15
	Lead	6010	3.0	8.7
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	52
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	2200

Released by: Laboratory Supervisor

1 of 1

AMERICAN

WEStlient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIHSab Sample ID.: 22631-63

Field Sample ID.: HM052495-13/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
84115	Arsenic	7060	0.5	2.6
	Barium	6010	0.5	74
	Cadmium	6010	0.2	0.7
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.3
	Cobalt	6010	0.5	3
	Copper	6010	0.5	3.1
•	Lead	6010	3.0	5.6
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	5.4
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
•	Zinc	6010	0.5	15

Released	by:	MA
	•	Lahamtami

WES Client: Kleinfelder

ANALYTICADate Sampled: May 23, 1995
LABORATORIE AB Sample ID.: 22631-64
Field Sample ID.: HM052495-14/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid
Samples

Ω.	naijutai Atsuits		*** *	
463 West 3600 Southr (Salt Lake City, Utah	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	7.1
	Barium	6010	0.5	84
	Cadmium	6010	0.2	0.9
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	10
	Cobalt	6010	0.5	14
	Copper	6010	0.5	8.7
	Lead	6010	3.0	6.7
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	24
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	140

Released by:	MIT	
	Laboratory Supervisor	

AMERICANClient: Kleinfelder
WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-65
LABORATORIE Field Sample ID.: HM052495-15/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

· -	Array erear Acesailes	Method <u>Used:</u>	Detection Limit:	Amount Detected:
463 West 3600 SoutiTOTAL METALS		•	mg/kg	mg/kg
Salt Lake City, Utah 84115		7060	0.5	3.8
(801) 263-8686 Fax (801) 263-8687	Barium	6010	0.5	44
	Cadmium	6010	0.2	3.4
	Chromium	6010	0.5	5.2
		6010	0.5	22
	Copper	6010	0.5	2.8
	Lead	6010	3.0	9.3
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	16
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	1400

Released by:	nn		
•	Laboratory Supervisor		

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995

ANALYTICAL ab Sample ID.: 22631-66
LABORATORIE Field Sample ID.: HM052495-16/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	3.6
(801) 263-8686 Fax (801) 263-8687	Barium	6010	0.5	67
	Cadmium	6010	0.2	0.8
	Chromium	6010	0.5	4.5
	Cobalt	6010	0.5	3.5
	Copper	6010	0.5	2.2
	Lead	6010	3.0	6.6
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	5.5
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	59

Released by:	MI
•	Laboratory Supervisor

AMERICAN

WESTClient: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995 LABORATORIES ab Sample ID.: 22631-67

Field Sample ID.: HM052495-17/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	marytical Results			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	7.2
	Barium	6010	0.5	75
	Cadmium	6010	0.2	1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	6.1
Tax (001) 203-0001	Cobalt	6010	0.5	6.1
· .	Copper	6010	0.5	4.2
	Lead	6010	3.0	9.7
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	8.1
	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	150

Released by:

AMERICANClient; Kleinfelder

WES Date Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-68

LABORATORIE Field Sample ID.: HM052495-18/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u>A</u>	nalytical Accusts	Mathad	Detection	Amount
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Limit: mg/kg	Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	2.7
	Barium	6010	0.5	94
	Cadmium	6010	0.2	0.7
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	10
	Cobalt	6010	0.5	5.3
	Copper	6010	0.5	6.8
	Lead	6010	3.0	5.5
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	10
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	25

Released	by:	

AMERICAN

WEGlient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIES Sample ID.: 22631-69

Field Sample ID.: HM052495-19/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

Aı	nalytical Results			
163 West 3600 South Salt Lake City, Utah		Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115 Arsenic	Arsenic	7060	0.5	890
	Barium	6010	0.5	40
	Cadmium	6010	0.2	50
(801) 263-8686	Chromium	6010	0.5	5.9
Fax (801) 263-8687	Cobalt	6010	0.5	6.4
	Copper	6010	0.5	640
	Lead	6010	3.0	20
V.	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	11
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	6300

Released by:

AMERICAN

INORGANIC ANALYSIS REPORT

WES Client: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIE ab Sample ID.: 22631-70

Field Sample ID.: HM052495-20/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South Salt Lake City, Utah	OTAL METALS	Method Used:	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115 I	Arsenic	7060	0.5	91
	Barium	6010	0.5	28
	Cadmium	6010	0.2	5.6
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.7
	Cobalt	6010	0.5	3.5
	Copper	6010	0.5	83
	Lead	6010	3.0	9.2
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	6.6
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	250

Released by:

AMERICAN

WEST Client: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995 LABORATORIE Lab Sample ID.: 22631-71

Field Sample ID.: HM052495-21/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

	mary cicur accounts			
463 West 3600 South Salt Lake City, Utah	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	5.3
	Barium	6010	0.5	89
	Cadmium	6010	0.2	0.9
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	11
	Cobalt	6010	0.5	4.1
	Copper	6010	0.5	7.9
	Lead	6010	3.0	9.1
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	7.7
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1
	Zinc	6010	0.5	26

Released by:	MI
	Laboratory Supervisor

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995
ANALYTICAL ab Sample ID.: 22631-72
LABORATORIE Field Sample ID.: HM052495-22/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	4.3
	Barium	6010	0.5	17
	Cadmium	6010	0.2	0.9
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	4.5
	Cobalt	6010	0.5	2.5
	Copper	6010	0.5	1.7
	Lead	6010	3.0	7.4
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	5.6
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	4.7

Released by: Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICAN

WESTClient: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995 LABORATORIE Lab Sample ID.: 22631-73

Field Sample ID.: HM052495-23/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

71	nary tical Acousts			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	21
	Barium	6010	0.5	80
	Cadmium	6010	0.2	1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	11
rax (801) 203-6067	Cobalt	6010	0.5	5.1
	Copper	6010	0.5	17
	Lead	6010	3.0	6.9
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	8.8
	Selenium	7740	0.1	0.3
	Silver	6010	0.5	<0.5
:	Zinc	6010	0.5	54

Released by:

AMERICANClient: Kleinfelder

WES Date Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-74

LABORATORIE Field Sample ID.: HM052495-24/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

	mary treat seesants	Method	Detection	Amount
T(463 West 3600 South	OTAL METALS	<u>Used:</u>	Limit: mg/kg	Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	17
0.115	Barium	6010	0.5	19
	Cadmium	6010	0.2	1.2
(901) 262 9696	Chromium	6010	0.5	4.5
(801) 263-8686 Fax (801) 263-8687	Cobalt	6010	0.5	3.5
	Copper	6010	0.5	10
	Lead	6010	3.0	11
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	5.5
1	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	11

Rel	eased	by:

AMERICAN

- WESClient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIE Lab Sample ID.: 22631-75

Field Sample ID.: HM052495-25/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount Detected: mg/kg
84115	Arsenic	7060	0.5	33
	Barium	6010	0.5	24
	Cadmium	6010	0.2	1.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.2
Tax (801) 203-0007	Cobalt	6010	0.5	3.4
	Copper	6010	0.5	19
	Lead	6010	3.0	12
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	5.3
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	22

AMERICAN

WESTClient: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995 LABORATORIE Lab Sample ID.: 22631-76

Field Sample ID.: HM052495-26/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	mary electric accounts			
463 West 3600 South Salt Lake City, Utah	OTAL METALS	Method Used:	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	3.2
	Barium	6010	0.5	52
	Cadmium	6010	0.2	1
(801) 263-8686	Chromium	6010	0.5	5.8
Fax (801) 263-8687	Cobalt	6010	0.5	3.2
	Copper	6010	0.5	3 .
	Lead	6010	3.0	8
,	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	6.8
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	12

Released by:

AMERICAN

wesclient: Kleinfelder

ANALYTICADate Sampled: May 23, 1995 LABORATORIHSab Sample ID.: 22631-77

Field Sample ID.: HM052495-27/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

A	naiyiicai Acsuits				
463 West 3600 South Salt Lake City, Utah	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg	
84115	Arsenic	7060	0.5	3	
	Barium	6010	0.5	32	
	Cadmium	6010	0.2	1.1	
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.6	
	Cobalt	6010	0.5	3	
	Copper	6010	0.5	2.7	
	Lead	6010	3.0	8.9	
	Mercury	7471	0.1	<0.1	
	Nickel	6010	0.5	7	
	Selenium	7740	0.1	0.3	
	Silver	6010	0.5	<0.5	
	Zinc	6010	0.5	6.3	

Released by:

AMERICAN

WESTClient: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995 LABORATORIE Lab Sample ID.: 22631-78 Field Sample ID.: HM052495-28/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	22
	Barium	6010	0.5	100
	Cadmium	6010	0.2	0.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	12
Fax (801) 203-8087	Cobalt	6010	0.5	6.5
	Copper	6010	0.5	19
	Lead	6010	3.0	25
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	9.1
	Selenium	7740	0.1	<0.1
•	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	40

Released by:

AMERICAN

WESTClient: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995
LABORATORIE Lab Sample ID.: 22631-79
Field Sample ID.: HM052495-29/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid Samples

4.2	italy treat recourse			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit</u> : mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	3.6
	Barium	6010	0.5	25
	Cadmium	6010	0.2	1.1
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.8
Fax (801) 203-8081	Cobalt	6010	0.5	3.2
	Copper	6010	0.5	3.4
	Lead	6010	3.0	11
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	6.7
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	8.1

Released by:	MIL
. •	Laboratory Supervisor

AMERICAN

WES Client: Kleinfelder

ANALYTICAIDate Sampled: May 23, 1995
LABORATORIE\$ Lab Sample ID.: 22631-80
Field Sample ID.: HM052495-30/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	italy creat recourses			
463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	44
	Barium	6010	0.5	36
	Cadmium	6010	0.2	1.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.9
	Cobalt	6010	0.5	4.1
	Copper	6010	0.5	37
	Lead	6010	3.0	53
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	7.3
	Selenium	7740	0.1	0.1
· I	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	53

Released by:

AMERICANClient: Kleinfelder

WESTDate Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-81

LABORATORIE Field Sample ID.: HM052495-31/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	660
	Barium	6010	0.5	39
ľ	Cadmium	6010	0.2	7.5
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	7.8
	Cobalt	6010	0.5	11
	Copper	6010	0.5	180
	Lead	6010	3.0	84
Ą	Mercury	7471	0.1	<0.1
,	Nickel	6010	0.5	12
1 .	Selenium	7740	0.1	0.2
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	690

Released	by:
rcicascu	υy.

AMERICAN WES Client: Kleinfelder

ANALYTICA Date Sampled: May 23, 1995
LABORATORIES ab Sample ID.: 22631-82
Field Sample ID.: HM052495-32/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

	nalytical Results		······································	
463 West 3600 SoudTO Salt Lake City, Utah	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
84115	Arsenic	7060	0.5	1.9
	Barium	6010	0.5	67
	Cadmium	6010	0.2	0.2
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	5.4
	Cobalt	6010	0.5	3.4
	Copper	6010	0.5	6.2
	Lead	6010	3.0	<3.0
•	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	5.8
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	15

Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICAN WES Client: Kleinfelder

ANALYTICA Date Sampled: May 23, 1995
LABORATORIE LABOR

Contact: Daniel Horns

Date Received: May 25, 1995
Received By: Elona Hayward
Set Description: Ninety-Seven Solid

Samples

	Mary Crour Acoustis	Method	Detection	Amount
463 West 3600 SoutFOTAL METALS		<u>Used:</u>	Limit: mg/kg	Detected: mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	24
	Barium	6010	0.5	110
	Cadmium	6010	0.2	0.5
(801) 263-8686	Chromium	6010	0.5	9.2
Fax (801) 263-8687	Cobalt	6010	0.5	10
	Copper	6010	0.5	44
	Lead	6010	3.0	45
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	9.9
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	77

Released by:	Part	
•	Laboratory Supervisor	

AMERICA Client: Kleinfelder

WESDate Sampled: May 23, 1995 ANALYTICALab Sample ID.: 22631-84

LABORATORIE Field Sample ID.: HM052495-34/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Flona Hayward

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

A .	iiaiyticai ixesuits			•
T(463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection <u>Limit:</u> mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	27
	Barium	6010	0.5	110
:	Cadmium	6010	0.2	0.6
(801) 263-8686 Fax (801) 263-8687	Chromium	6010	0.5	11
	Cobalt	6010	0.5	11
	Copper	6010	0.5	43
	Lead	6010	3.0	53
a	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	11
l	Selenium	7740	0.1	0.1
	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	68

Released by:	KIL	
	Laboratory Supervisor	

AMERICA Client: Kleinfelder

WES Date Sampled: May 23, 1995 ANALYTICAL ab Sample ID.: 22631-85

LABORATORIE Field Sample ID.: HM052495-35/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u> </u>	marytical Results			•
T(463 West 3600 South	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	5.2
	Barium	6010	0.5	100
(801) 263-8686 Fax (801) 263-8687	Cadmium	6010	0.2	0.3
	Chromium	6010	0.5	11
	Cobalt	6010	0.5	5.6
	Copper	6010	0.5	11
	Lead	6010	3.0	9.7
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	9.8
k	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.3
	Zinc	6010	0.5	25

Rel	eased	by:	

Laboratory Supervisor

Report Date 6/1/95

1 of 1

AMERICAN Client: Kleinfelder
WEST Date Sampled: May 23, 1995
ANALYTICAL Lab Sample ID.: 22631-86
LABORATORIES ield Sample ID.: HM052495-36/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

A	nalytical Results			
	OTAL METALS	Method <u>Used:</u>	Detection Limit: mg/kg	Amount <u>Detected:</u> mg/kg
463 West 3600 South Salt Lake City, Utah	Arsenic	7060	0.5	4.3
84115	Barium	6010	0.5	110
	Cadmium	6010	0.2	0.3
	Chromium	6010	0.5	11
(801) 263-8686 Fax (801) 263-8687	Cobalt	6010	0.5	5.8
	Copper	6010	0.5	12
	Lead	6010	3.0	9.4
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	10
	Selenium	7740	0.1	<0.1
	Silver	6010	0.5	1.1
	Zinc	6010	0.5	29

Released by:	KIT
	Laboratory Supervisor

AMERICANClient: Kleinfelder

WESTDate Sampled: May 23, 1995

ANALYTICALLab Sample ID.: 22631-87 LABORATORIESField Sample ID.: HM052495-37/31-6930 60

Contact: Daniel Horns

Date Received: May 25, 1995

Received By: Elona Hayward Set Description: Ninety-Seven Solid

Samples

Analytical Results

<u></u>	Tury order at the state of the	Method <u>Used:</u>	Detection Limit:	Amount Detected:
463 West 3600 South ^T	OTAL METALS	- SANGE	mg/kg	mg/kg
Salt Lake City, Utah 84115	Arsenic	7060	0.5	1.7
	Barium	6010	0.5	97
	Cadmium	6010	0.2	0.5
(801) 263-8686	Chromium	6010	0.5	13
Fax (801) 263-8687	Cobalt	6010	0.5	7.7
	Copper	6010	0.5	16
,	Lead	6010	3.0	5.5
	Mercury	7471	0.1	<0.1
	Nickel	6010	0.5	14
	Selenium	7740	0.1	<0.1
ļi I	Silver	6010	0.5	<0.5
	Zinc	6010	0.5	41

Released by:

OUALITY CONTROL REPORT

Client: Kleinfelder

Lab Sample ID.: 22631 Set Description: Ninety Solid Samples Contact: Daniel Horns Received By: Elona Hayward

Quality Control Results

Units = (ppm)

Sample #	Compound	Original Concentration (SR)	Spike Added (SA)	Spike Result (SSR)	Spike Dup Result (SDR)	% Spike Recovery (%SR)	% Spike Dup Recovery (%SDR)	% Duplicate Difference (RPD)
22631-01	Arsenic	92.	100.	193.	183.	101.0	91.0	5.3
22631-01	Barium	66.	55 .	121.	122.	100.0	101.8	-0.8
22631-01	Cadmium	7.2	55.	56.1	56.6	88.9	89.8	-0.9
22631-01	Chromium	9.1	55.	59.3	59.8	91.3	92.2	-0.8
22631-01	Lead	166.	55.	215.	215.	89.1	89.1	0.0
22631-01	Mercury	0.0	0.6	0.697	0.677	116.2	112.8	2.9
22631-01	Selenium	0.0	50.	37.6	38.5	75.2	77.0	-2.4
22631-01	Silver	0.7	55.	60.6	58.7	108.9	105.5	3.2
22631-01	Cobalt	258.	55.	307.	307.	89.1	89.1	0.0
22631-01	Copper	264.	55.	320.	321.	101.8	103.6	-0.3
22631-01	Nickel	28.	55.	76.6	76.9	88.4	88.9	-0.4
- 22631-01	Zinc	248.	55.	301.	302.	96.4	98.2	-0.3

 $RPD = \frac{(SSR - SDR)}{(SSR + SDR)} * 100$

 $\%SR = \frac{(SSR \cdot SR)}{SA} * 100$

 $\%SDR = \frac{(SDR - SR)}{SA} * 100$

Released by: //

OUALITY CONTROL REPORT

Client: Kleinfelder

Lab Sample ID.: 22631
Set Description: Ninety Solid Samples

Contact: Daniel Horns Received By: Elona Hayward

Quality Control Results

Units = (ppm)

Sample	Compound	Original Concentration (SR)	Spike Added (SA)	Spike Result (SSR)	Spike Dup Result (SDR)	% Spike Recovery (%SR)	% Spike Dup Recovery (%SDR)	% Duplicate Difference (RPD)
22631-30	Arsenic	109.	33.5	134.	134.	74.6	74.6	0.0
22631-21	Barium	91.	55.	148.	148.	103.6	103.6	0.0
22631-21	Cadmium	3.6	55.	55.3	54.3	94.0	92.2	1.8
22631-21	Chromium	11.	55.	63.7	62.6	95.8	93.8	1.7
22631-21	Lead	158.	55.	211.	209.	96.4	92.7	1.0
22631-21	Mercury	0.0	0.6	0.536	0.559	89.3	93.2	-4.2
22631-21	Selenium	0.0	50.	43.0	42.6	86.0	85.2	0.9
22631-21	Silver	0.8	55.	56.1	55.3	100.5	99.1	1.4
22631-21	Cobalt	298.	55 .	348.	349.	90.9	92.7	-0.3
22631-21	Copper	92.	55.	153.	150.	110.9	105.5	2.0
22631-21	Nickel	17.	55.	68.4	67.5	93.5	91.8	1.3
22631-21	Zinc	119.	55 .	176.	174.	103.6	100.0	1.1

 $\%SDR = \frac{(SDR - SR)}{SA} * 100$

Client: Kleinfelder

Lab Sample ID.: 22631 Set Description: Ninety Solid Samples

Contact: Daniel Horns Received By: Elona Hayward

Quality Control Results

Units = (ppm)

Sample	Compound	Original Concentration (SR)	Spike Added (SA)	Spike Result (SSR)	Spike Dup Result (SDR)	% Spike Recovery (%SR)	% Spike Dup Recovery (%SDR)	% Duplicate Difference (RPD)
22631-41	Arsenic	0.0	50.	58.8	57.4	117.6	114.8	2.4
22631-41	Barium	152.	55 .	208.	210.	101.8	105.5	-1.0
22631-41	Cadmium	0.4	55.	53.6	54.0	96.7	97.5	-0.7
22631-41	Chromium	16.	55 .	69.8	70.3	97.8	98.7	-0.7
22631-41	Lead	20.	55 .	74.9	74.5	99.8	99.1	0.5
22631-41	Mercury	0.0	2.0	2.38	2.36	119.0	118.0	0.8
22631-41	Selenium	0.0	50 .	50.8	52.0	101.6	104.0	-2.3
22631-41	Silver	0.0	55.	63.4	58.7	115.3	106.7	7.7
22631-41	Cobalt	8.0	55.	63.8	62.1	101.5	98.4	2.7
22631-41	Copper	26.	55.	85.5	85.9	108.2	108.9	-0.5
22631-41	Nickel	14.	55.	66.2	66.8	94.9	96.0	-0.9
22631-41	Zinc	54.	<i>55</i> .	110.	110.	101.8	101.8	0.0

 $\%SR = \frac{(SSR - SR)}{SA} * 100$

Client: Kleinfelder

Lab Sample ID.: 22631
Set Description: Ninety Solid Samples

CONTROL REPORT

Contact: Daniel Horns Received By: Elona Hayward

Quality Control Results

Units = (ppm)

Sample	Compound	Original Concentration (SR)	Spike Added (SA)	Spike Result (SSR)	Spike Dup Result (SDR)	% Spike Recovery (%SR)	% Spike Dup Recovery (%SDR)	% Duplicate Difference (RPD)
22631-61	Arsenic	79.	33.5	111.	109.	95.5	89.6	1.8
22631-61	Barium	67.	55.	126.	124.	107.3	103.6	1.6
22631-61	Cadmium	2.1	<i>55</i> .	54.2	52.9	94.7	92.4	2.4
22631-61	Chromium	24.	55.	77.8	76.3	97.8	95.1	1.9
22631-61	Lead	8.0	55.	61.1	60.2	96.5	94.9	1.5
22631-61	Mercury	0.0	0.6	0.577	0.571	96.2	95.2	1.0
22631-61	Selenium	0.0	50.	46.2	47.1	92.4	94.2	-1.9
22631-61	Silver	0.0	55.	58.9	54.5	107.1	99.1	7.8
22631-61	Cobalt	36.	55.	88.0	86.6	94.5	92.0	1.6
22631-61	Copper	9.5	55.	69.9	68.2	109.8	106.7	2.5
22631-61	Nickel	37.2	55.	88.9	87.4	94.0	91.3	1.7
22631-61	Zinc	1,319.	55.	1,375.	1,368.	101.8	89.1	0.5

$$RPD = \frac{(SSR - SDR)}{(SSR + SDR)} * 100$$

$$\%SR = \frac{(SSR - SR)}{SA} * 100$$

$$\%SDR = \frac{(SDR - SR)}{SA} * 100$$

OUALITY CONTROL REPORT

Client: Kleinfelder

Lab Sample ID.: 22631 Set Description: Ninety Solid Samples

Contact: Daniel Horns Received By: Elona Hayward

Quality Control Results

Units = (ppm)

Sample #	Compound	Original Concentration (SR)	Spike Added (SA)	Spike Result (SSR)	Spike Dup Result (SDR)	% Spike Recovery (%SR)	% Spike Dup Recovery (%SDR)	% Duplicate Difference (RPD)
22631-81	Arsenic	660.	335.	923.	941.	78.5	83.9	-1.9
22631-81	Barium	39.	55 .	98.8	97.4	108.7	106.2	1.4
22631-81	Cadmium	7.5	55.	61.0	59.7	97.3	94.9	2.2
22631-81	Chromium	7.8	55.	62.5	61.0	99.5	96.7	2.4
22631-81	Lead	84.	55.	137.	136.	96.4	94.5	0.7
22631-81	Mercury	0.0	0.6	0.586	0.581	97.7	95.3	2.4
22631-81	Selenium	0.2	50.	47.0	48.5	93.6	96.6	-3.1
22631-81	Cobalt	11.	55.	64.7	63.2	97.6	94.9	2.3
22631-81	Copper	182.	55.	238.	240.	101.8	105.5	-0.8
22631-81	Nickel	12.	55 .	65.3	63.7	96.9	94.0	2.5
22631-81	Zinc	693.	55.	745.	745.	94.5	94.5	0.0
22631-81	Silver	0.0	55.	58.5	55.9	106.4	101.6	4.5

$$RPD = \frac{(SSR - SDR)}{(\frac{SSR + SDR}{2})} * 100$$

$$\%SR = \frac{(SSR - SR)}{SA} * 100$$

$$\%SDR = \frac{(SDR - SR)}{SA} * 100$$

6-Jun-95

Page: R-1 Job:

952182E Status: Final

AMERICAN WEST ANALYTICAL LAB

Analyte: Gross Alpha Fraction: Total Method: 900.0

Project:

Date Analyzed: 05/31-06/06

Method: Sec... Units: pCi/g Date

LLD: 2

Lab Id	Sampled Matrix	: Sample Id	Concentration 2^	LLD
952182-1	23-May-95 Soil	22631-93	6.9°5.8	2
952182-2	23-May-95 Soil	22631-95	10~6	2
952182-3	23-May-9S Soil	22631-96	6.8-6.1	Z
952182-4	23-May-95 Soil	22631-97	7.2~6.1	2

Analyte: Gross Beta

Project:

Fraction: Total

Date Analyzed: 05/31-06/06

LLD: 4

Method: 900.0 Units: pCi/g

Date

Lab Id	Sampled	Matrix	Sample Id	Concentration Z^	LLD
952182-1	23-May-95	Soil	22631-93	12~5	4
952182-2	23-May-95	Soil	22631-95	18~6	4
952182-3	23-Hay-95	Soil	22631-96	9.8~5.3	4
952182-4	23-May-95	Soil	22631-97	15~6	4

AMERICAN WEST ANALYTICAL LABORATORIES

463 West 3600 South Salt Lake City, Utah

(801) 263-8686 Fax (801) 263-8687

84115

INORGANIC ANALYSIS REPORT

Client: Kleinfelder

Date Sampled: May 23, 1995

Lab Sample ID.: 22631

Field Sample ID: 22631-Method Blank

Contact: Daniel Horns

Date Received: May 25, 1995 Received By: Elona Hayward

Set Description: Ninety Seven Solid

Samples

Analytical Results

Analytical Results	16-4 km		
TOTAL METALS	Method <u>Used:</u>	Detection Limit: mg/L	Amount Detected: mg/L
Arsenic	7060	0.005	<0.005
Barium	6010	0.002	<0.002
Cadmium	6010	0.004	<0.004
Chromium	6010	0.01	<0.01
Cobalt	6010	0.01	<0.01
Copper	6010	0.005	<0.005
Lead	6010	0.05	<0.05
Mercury	7471	0.001	<0.001
Nickel	6010	0.005	<0.005
Selenium	7740	0.005	<0.005
Silver	6010	0.01	<0.01
Zinc	6010	0.005	<0.005

Released by:

Laboratory Supervisor

Report Date 6/7/95

l of l

APPLICATION FOR AUTHORIZATION TO USE

Surface Soil Assessment Hecla Mining Company - Apex Unit St. George, Utah

Dated: June 7, 1995

то:	Kleinfelder, Inc. 551 North 1400 East St. George, UT 84770	
FROM:	(Please clearly identify name and permission to use or copy this st	d address of person/entity applying for atement)
Gentlemen:		
Applicant	here	by applies for permission to:
[State here th	e use(s) contemplated]	•
Applicant und Company-Apdocument, the copying of "S Utah" dated I of Kleinfelder permission at conditions as	derstands and agrees that "Surface ex Unit, St. George, Utah" dated at Kleinfelder, Inc. is the copyright furface Soil Assessment, Hecla Mune 7, 1995" is strictly prohibited	e Soil Assessment, Hecla Mining June 7, 1995 is a copyrighted ht owner and that unauthorized use or lining Company-Apex Unit, St. George, d without the express written permission t Kleinfelder, Inc. may withhold such permission upon such terms and
Dated:	·····	Applicant
	BY:	
		Name
	•	Title